Spelling suggestions: "subject:"healthcare trajectories"" "subject:"ahealthcare trajectories""
1 |
Transitions in Care: A Data-Driven Exploration of Patient Pathways in the Canadian Healthcare SystemTaremi, Mohammadreza January 2024 (has links)
In the complex landscape of healthcare, patients navigate through various institutions from hospitals to long-term care facilities, and each step of their journey plays a crucial role in their disease progression and treatment plan. Traditional analyses often focus on individual transitions, offering limited insight into the broader picture of patient care and disease progression. This thesis aims to explore the entire sequence of patient transitions within the Canadian healthcare system to uncover meaningful patterns and commonalities.
This research employs an innovative approach to leveraging the Canadian Institute for Health Information (CIHI) dataset, consisting of around 250,000 patient records after data cleaning and including approximately 10-11 variables. Extracting a diverse category of features, such as temporal, semantic, and clinical information, constructs a detailed profile for each patient journey. These profiles then undergo an parallel mini-batch average agglomerative hierarchical clustering process, grouping together patients with similar healthcare trajectories to identify prevailing pathways and transitions within the system.
By understanding these patterns, healthcare providers and policymakers can gain insights into the patient experience, potentially revealing areas for improvement, optimization, and personalization of care. Key findings include uncovering transitions in the healthcare environment, identifying the most common pathways, and studying the alternate level of care length of stay for each scenario. Looking ahead, the research anticipates incorporating additional layers of data, such as specific interventions and medications, to enrich the analysis. This expansion aims to offer a more comprehensive view of patient journeys, further enhancing the ability to tailor healthcare services to meet individual needs effectively. / Thesis / Master of Computer Science (MCS)
|
2 |
Explorer les trajectoires de patients via les bases médico-économiques : application à l'infarctus du myocarde / Exploring trajectories of patients via medico-economic databases : application to myocardial infarctionPinaire, Jessica 17 October 2017 (has links)
Avec environ 120 000 personnes atteintes chaque année, 12 000 décès suite à la première crise et 18 000 décès après une année, l'infarctus du myocarde est un enjeu majeur de santé publique. Cette pathologie nécessite une hospitalisation et une prise en charge dans une unité de soins intensifs de cardiologie. Pour étudier cette pathologie, nous nous sommes orientés vers les bases hospitalières du PMSI.La collecte des données hospitalières dans le cadre du PMSI génère sur le plan national des bases de données de l'ordre de 25 millions d'enregistrements par an.Ces données, qui sont initialement recueillies à des fins médico-économiques, contiennent des informations qui peuvent avoir d'autres finalités : amélioration de la prise en charge du patient, prédiction de l'évolution des soins, planification de leurs coûts, etc.Ainsi émerge un autre enjeu : celui de fournir des outils d'explorations des trajectoires hospitalières des patients à partir des données issues du PMSI. Par le biais de plusieurs objectifs, les travaux menés dans le cadre de cette thèse ont pour vocation de proposer des outils combinant des méthodes issues de trois disciplines : informatique médicale, fouille de données et biostatistique.Nous apportons quatre contributions.La première contribution concerne la constitution d'une base de données de qualité pour analyser les trajectoires de patients. La deuxième contribution est une méthode semi-automatique pour la revue systématique de la littérature. Cette partie des travaux délimite les contours du concept de trajectoire dans le domaine biomédical. La troisième contribution est l'identification des parcours à risque dans la prédiction du décès intra-hospitalier. Notre stratégie de recherche s'articule en deux phases : 1) Identification de trajectoires types de patients à l'aide d'outils issus de la fouille de données ; 2) Construction d'un modèle de prédiction à partir de ces trajectoires afin de prédire le décès. Enfin, la dernière contribution est la caractérisation des flux de patients à travers les différents évènements hospitaliers mais aussi en termes de délais d'occurrences et de coûts de ces évènements. Dans cette partie, nous proposons à nouveau une alliance entre une méthode de fouille de données et de classification de données longitudinales. / With approximately 120,000 people affected each year, 12,000 deaths from the first crisis and 18,000 deaths after one year, myocardial infarction is a major public health issue. This pathology requires hospitalization and management in an intensive care cardiology unit. We study this pathology using the French national Prospective Paiement System (PPS) databases.The collection of national hospital data within the framework of the PPS generates about 25 million records per year.These data, which are initially collected for medico-economic purposes, contain information that may have other purposes: improving patient care, predicting the evolution of care, planning their costs, etc.Another emerging issue is that of providing tools for exploring patients' hospital trajectories using data from the PPS. Through several objectives, this thesis aims to suggest tools combining methods from three disciplines: medical computing, data mining and biostatistics.We make four contributions.The first contribution concerns the constitution of a quality database to analyze patient trajectories. The second contribution is a semi-automatic method for the systematic review of the literature. This part of the work delineates the contours of the trajectory concept in the biomedical field. The third contribution is the identification of care trajectories in the prediction of intra-hospital death. Our research strategy is divided into two phases: 1) Identification of typical patient trajectories using data mining tools; 2) Construction of a prediction model from these trajectories to predict death. Finally, the last contribution is the characterization of patient flows through the various hospital events, also considering of delays and costs. In this contribution, we propose a combined-data mining and a longitudinal data clustering technique.
|
Page generated in 0.0553 seconds