• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • 2
  • Tagged with
  • 12
  • 12
  • 12
  • 8
  • 5
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Convecção natural de fluidos de lei de potência e de Bingham em cavidade fechada preenchida com meio heterogêneo

Lavarda, Jairo Vinícius 20 March 2015 (has links)
CAPES / Vários estudos numéricos investigaram cavidades fechadas sob o efeito da convecção natural preenchidas com fluidos newtonianos generalizados (FNG) nos últimos anos pelas aplicações diretas em trocadores de calor compactos, no resfriamento de sistemas eletrônicos e na engenharia de polímeros. Neste trabalho é realizada a investigação numérica do processo de convecção natural de fluidos de lei de Potência e de Bingham em cavidades fechadas, aquecidas lateralmente e preenchidas com meios heterogêneos e bloco centrado. O meio heterogêneo é constituído de blocos sólidos, quadrados, desconectados e condutores de calor. Como parâmetros são utilizados a faixa de Rayleigh de 104 à 107, índice de potência n de 0, 6 à 1, 6, número de Bingham de 0, 5 até Bimax , sendo investigado da influência do número de Prandtl para cada modelo de fluido. Nas cavidades com meio heterogêneo são utilizadas as quantidades de blocos de 9, 16, 36 e 64, mantendo-se a razão entre a condutividade térmica do sólido e do fluido κ = 1. Para as cavidades com bloco centrado, são utilizados os tamanhos adimensionais de 0, 1 à 0, 9 com κ = 0, 1; 1 e 10. A modelagem matemática é realizada pelas equações de balanço de massa, de quantidade de movimento e de energia. As simulações são conduzidas no programa comercial ANSYS FLUENT R . Inicialmente são resolvidos problemas com fluidos newtonianos em cavidade limpa, seguida de cavidade preenchida com meio heterogêneo e posteriormente bloco centrado para validação da metodologia de solução. Na segunda etapa é realizada o estudo com os modelos de fluidos de lei de Potência e de Bingham seguindo a mesma sequência. Os resultados são apresentados na forma de linhas de corrente, isotermas e pelo número de Nusselt médio na parede quente. De maneira geral, a transferência de calor na cavidade é regida pelo número de Rayleigh, tamanho e condutividade térmica dos blocos, pelo índice de potência para o modelo de lei de Potência e do número de Bingham para o modelo de Bingham. O número de Prandtl tem grande influência nos dois modelos de fluidos. O meio heterogêneo reduz a transferência de calor na cavidade quando interfere na camada limite térmica para ambos os fluidos, sendo feita uma previsão analítica para o fluido de lei de Potência. Para bloco centrado, a interferência na camada limite com fluido de lei de Potência também foi prevista analiticamente. A transferência de calor aumentou com bloco de baixa condutividade térmica e pouca interferência e com bloco de alta condutividade térmica e grande interferência, para ambos os fluidos. / Many studies have been carried out in square enclosures with generalized Newtonian fluids with natural convection in past few years for directly applications in compact heat exchangers, cooling of electronics systems and polymeric engineering. The natural convection in square enclosures with differently heated sidewalls, filled with power-law and Bingham fluids in addition with heterogeneous medium and centered block are analyzed in this study. The heterogeneous medium are solid, square, disconnected and conducting blocks. The parameters used are the Rayleigh number in the range 104 - 107 , power index n range of 0, 6 - 1, 6, Bingham number range of 0, 5 - Bimax , being the influence of Prandtl number investigated for each fluid model. The number of blocks for heterogeneous medium are 9, 16, 36 and 64, keeping constant solid to fluid conductive ratio, κ = 1. For enclosures with centered block are used the nondimensional block size from 0, 1 to 0, 9, with solid to fluid conductive ratio in range κ = 0, 1; 1 and 10. Mathematical modeling is done by mass, momentum and energy balance equations. The solution of equations have been numerically solved in ANSYS FLUENT R software. Firstly, numerical solutions for validation with Newtonian fluids in clean enclosures are conducted, followed by enclosures with heterogeneous medium and centered block. Subsequently, numerical solutions of power-law and Bingham fluids with same enclosures configurations are conducted. The results are reported in the form of streamlines, isotherms and average Nusselt number at hot wall. In general, the heat transfer process in enclosure is governed by Rayleigh number, size and thermal conductivity of the blocks, power index n for power-law fluid and Bingham number for Bingham fluid. Both fluid models are very sensitive with Prandtl number changes. Heterogeneous medium decrease heat transfer in enclosure when affects thermal boundary layer for both fluid models. One analytical prediction was made for power-law fluid. An increase in heat transfer occurs with low thermal conductivity block and few interference and with high thermal conductivity block and great interference, for both fluids.
12

Convecção natural de fluidos de lei de potência e de Bingham em cavidade fechada preenchida com meio heterogêneo

Lavarda, Jairo Vinícius 20 March 2015 (has links)
CAPES / Vários estudos numéricos investigaram cavidades fechadas sob o efeito da convecção natural preenchidas com fluidos newtonianos generalizados (FNG) nos últimos anos pelas aplicações diretas em trocadores de calor compactos, no resfriamento de sistemas eletrônicos e na engenharia de polímeros. Neste trabalho é realizada a investigação numérica do processo de convecção natural de fluidos de lei de Potência e de Bingham em cavidades fechadas, aquecidas lateralmente e preenchidas com meios heterogêneos e bloco centrado. O meio heterogêneo é constituído de blocos sólidos, quadrados, desconectados e condutores de calor. Como parâmetros são utilizados a faixa de Rayleigh de 104 à 107, índice de potência n de 0, 6 à 1, 6, número de Bingham de 0, 5 até Bimax , sendo investigado da influência do número de Prandtl para cada modelo de fluido. Nas cavidades com meio heterogêneo são utilizadas as quantidades de blocos de 9, 16, 36 e 64, mantendo-se a razão entre a condutividade térmica do sólido e do fluido κ = 1. Para as cavidades com bloco centrado, são utilizados os tamanhos adimensionais de 0, 1 à 0, 9 com κ = 0, 1; 1 e 10. A modelagem matemática é realizada pelas equações de balanço de massa, de quantidade de movimento e de energia. As simulações são conduzidas no programa comercial ANSYS FLUENT R . Inicialmente são resolvidos problemas com fluidos newtonianos em cavidade limpa, seguida de cavidade preenchida com meio heterogêneo e posteriormente bloco centrado para validação da metodologia de solução. Na segunda etapa é realizada o estudo com os modelos de fluidos de lei de Potência e de Bingham seguindo a mesma sequência. Os resultados são apresentados na forma de linhas de corrente, isotermas e pelo número de Nusselt médio na parede quente. De maneira geral, a transferência de calor na cavidade é regida pelo número de Rayleigh, tamanho e condutividade térmica dos blocos, pelo índice de potência para o modelo de lei de Potência e do número de Bingham para o modelo de Bingham. O número de Prandtl tem grande influência nos dois modelos de fluidos. O meio heterogêneo reduz a transferência de calor na cavidade quando interfere na camada limite térmica para ambos os fluidos, sendo feita uma previsão analítica para o fluido de lei de Potência. Para bloco centrado, a interferência na camada limite com fluido de lei de Potência também foi prevista analiticamente. A transferência de calor aumentou com bloco de baixa condutividade térmica e pouca interferência e com bloco de alta condutividade térmica e grande interferência, para ambos os fluidos. / Many studies have been carried out in square enclosures with generalized Newtonian fluids with natural convection in past few years for directly applications in compact heat exchangers, cooling of electronics systems and polymeric engineering. The natural convection in square enclosures with differently heated sidewalls, filled with power-law and Bingham fluids in addition with heterogeneous medium and centered block are analyzed in this study. The heterogeneous medium are solid, square, disconnected and conducting blocks. The parameters used are the Rayleigh number in the range 104 - 107 , power index n range of 0, 6 - 1, 6, Bingham number range of 0, 5 - Bimax , being the influence of Prandtl number investigated for each fluid model. The number of blocks for heterogeneous medium are 9, 16, 36 and 64, keeping constant solid to fluid conductive ratio, κ = 1. For enclosures with centered block are used the nondimensional block size from 0, 1 to 0, 9, with solid to fluid conductive ratio in range κ = 0, 1; 1 and 10. Mathematical modeling is done by mass, momentum and energy balance equations. The solution of equations have been numerically solved in ANSYS FLUENT R software. Firstly, numerical solutions for validation with Newtonian fluids in clean enclosures are conducted, followed by enclosures with heterogeneous medium and centered block. Subsequently, numerical solutions of power-law and Bingham fluids with same enclosures configurations are conducted. The results are reported in the form of streamlines, isotherms and average Nusselt number at hot wall. In general, the heat transfer process in enclosure is governed by Rayleigh number, size and thermal conductivity of the blocks, power index n for power-law fluid and Bingham number for Bingham fluid. Both fluid models are very sensitive with Prandtl number changes. Heterogeneous medium decrease heat transfer in enclosure when affects thermal boundary layer for both fluid models. One analytical prediction was made for power-law fluid. An increase in heat transfer occurs with low thermal conductivity block and few interference and with high thermal conductivity block and great interference, for both fluids.

Page generated in 0.1482 seconds