Spelling suggestions: "subject:"heat -- atransmission."" "subject:"heat -- cotransmission.""
431 |
A study of micro-scale, fractal-like branching flow networks for reduced pumping power and improved temperature uniformityAlharbi, Ali Y. 29 November 2001 (has links)
A first generation, one-dimensional predictive model is proposed for
designing heat sinks with fractal flow networks. A three-dimensional
computational fluid dynamics (CFD) model is analyzed as a means for validating
the model and identifying areas for improvement.
Two separate CFD models were developed. One was analyzed with
conjugate heat transfer whereas the other was not. For the conjugate heat transfer
model, heat flux was provided at a single surface, simulating a heat source. Energy
addition to the latter model, referred to as the non-conjugate model, was uniform to
all surfaces and was developed to assess the assumptions employed in the one-dimensional
model.
Both CFD models were run with and without variable properties and are
compared to results with a series of parallel channels with identical convective
surface areas. In all cases, with and without conjugate heat transfer and with and
without variable fluid properties, the fractal flow network showed lower maximum
surface temperatures than the straight channel network for identical pumping
powers. The pumping power, however, was determined assuming constant fluid
properties.
The variation in fluid viscosity with temperature was determined to have a
significant impact on the pressure distribution, which indicates that variable fluid
viscosity needs to be included in the one-dimensional model.
Also varied in the analyses were heat sink material, heat flux and flow rate.
Qualitative results show that temperature variations within the copper substrate are
less significant than in the stainless steel substrate. All analyses, including the one-dimensional
model, were restricted to laminar flow conditions. / Graduation date: 2002
|
432 |
Critical heat flux estimation for annular channel geometryPagh, Richard T. 26 April 2001 (has links)
Critical Heat Flux (CHF) is an important safety parameter for the design of nuclear
reactors. The most commonly used predictive tool for determination of CHF is a look-up
table developed using tube data with an average hydraulic test diameter of 8 mm. There
exist in the world today nuclear reactors whose geometry is annular, not tubular, and
whose hydraulic diameter is significantly smaller than 8 mm. In addition, any sub-channel
thermal hydraulic model of fuel assemblies is annular and not tubular.
Comparisons were made between this predictive tool and annular correlations developed
from test data. These comparisons showed the look-up table over-predicts the CHF
values for annular channels, thus questioning its ability to perform correct safety
evaluations.
Since no better tool exists to predict CHF for annular geometry, an effort was
undertaken to produce one. A database of open literature annular CHF values was
created as a basis for this new tool. By compiling information from eighteen sources and
requiring that the data be inner wall, unilaterally, uniformly heated with no spacers or
heat transfer enhancement devices, a database of 1630 experimental values was
produced.
After a review of the data in the database, a new look-up table was created. A look-up
table provides localized control of the prediction to overcome sparseness of data.
Using Shepard's Method as the extrapolation technique, a regular mesh look-up table was
produced using four main variables: pressure, quality, mass flux, and hydraulic diameter.
The root mean square error of this look-up table was found to be 0.8267. However, by
fixing the hydraulic diameter locations to the database values, the root mean square error
was further reduced to 0.2816. This look-up table can now predict CHF values for
annular channels over a wide range of fluid conditions. / Graduation date: 2001
|
433 |
Laminar natural convection within long vertical uniformly heated parallel-plate channels and circular tubesVorayos, Nat 27 June 2000 (has links)
The problem of simple mathematical models of laminar natural convective
flow within a long vertical parallel-plate channels and circular tubes kept at
uniformly heated walls is revisited to seek a clear physical understanding of heat
transfer mechanisms. A series solution method to analyze the fully developed flow
and an integral solution method to analyze the developing flow are used. Chapters
3, 4, and 5 of this dissertation constitute a series of three-paper manuscripts for
submission to archival journals.
The channels and circular tubes considered here are assumed to be
sufficiently long to yield a fully developed flow thermally as well as
hydrodynamically before the exit is encountered. In such fully developed flow
situation, the fluid mass flow rate naturally induced into the channel due to
buoyancy is found to be a function of the wall heating condition. The predicted
average Nusselt number as a function of GrPrD/L not only agrees with the existing
literature but also is found to be in a functional form comparable to that proposed
by Elenbaas (1942 a and b). Our results show that, in spite of being driven by
buoyancy (rather than by a pump or a blower), the flow and heat transfer
characteristics in the fully developed regime are essentially the same as those of
fully developed laminar forced convection in which the flow is externally driven.
This observation is confirmed to be valid also in the study (Chapter 5) of
laminar natural convection in the developing (entrance) region within a long
vertical parallel-plate channel and circular tube. The mass flow rate, which has to
remain invariant with axial location even in the entry region, is determined by the
flow in the fully developed region. This is the same mechanism involved in forced
convection in which the fluid outside the developing boundary layers (i.e. the core
flow) is forced to accelerate in the entrance region. The entrance length of channel
natural convection is also discovered to be about the same as that in forced
convection. / Graduation date: 2001
|
434 |
Heat transfer in the splash-zone of a high temperature fluidized bedPidwerbecki, David 29 August 1994 (has links)
Graduation date: 1995
|
435 |
Heat transmission along the surface of dental implantPatel, Zaheed January 2009 (has links)
<p>Objectives: Temperature changes along an implant body have not been widely studied. The objectives of this in vitro study were (i) to establish if the temperature of the abutment influences the temperature of the implant surface, (ii) to establish the temperature transmission from abutment to implant body, and (iii) to establish for what abutment temperature the critical time/temperature threshold of 47oC for 1 minute at implant level is reached.</p>
|
436 |
Development of heat transfer correlation and flow regime map for heated horizontal pipe using support vector machinesCheong, Chan Wa January 2011 (has links)
University of Macau / Faculty of Science and Technology / Department of Electromechanical Engineering
|
437 |
Boiling in Mini and Micro-ChannelsOlayiwola, Nurudeen Oladipupo 23 June 2005 (has links)
Cooling systems that consist of mini-channels (hydraulic diameters in the 0.5 mm to 2.0 mm range) and micro-channels (hydraulic diameters in the 100 m-500 m range) can dispose of extremely large volumetric thermal loads that are well beyond the feasible operating range of conventional cooling methods. Mini/micro-channel systems that utilize boiling fluids are particularly useful due to the superiority of boiling heat transfer mode over single-phase flow convection. Although forced flow boiling in mini and micro-channels has been investigated by several research groups in the past, a verified and reliable predictive method is not yet available.
In this study, the capability of a large number of forced flow boiling heat transfer correlations for application to mini channels is examined by comparing their predictions with three experimental data sets. The data all represent recently-published experiments with mini-channels The tested correlations include well-established methods for forced-flow boiling in conventional boiling systems, as well as correlations recently proposed for mini-channels.
Based on these comparisons, the most accurate existing predictive methods for mini-channel boiling are identified. The deficiencies of the predictive methods and the potential causes that underlie these deficiencies are also discussed.
|
438 |
Measurement and Mapping of Pulse Combustion Impingement Heat Transfer RatesHagadorn, Charles C., III 24 August 2005 (has links)
Current research shows that pulse combustion impingement drying is an improvement over the steady impingement drying currently in commercial use. Pulse combustion impingement has higher heat transfer rates and a lower impact on the environment.
Commercialization of pulse impingement drying is the goal of the Pulsed Air Drying group at IPST. To that end the objective of this project is to develop a system that will allow researchers to measure heat transfer rates at the impingement surface from the impinging air.
A water cooled impingement plate with temperature and heat flux measuring capabilities was developed which accurately measures and records the desired information. The impingement plate was tested and its results were verified by comparison with previous literature.
Finally a preliminary comparison between steady and pulse combustion impingement was carried out. The study shows pulsed combustion impingement to be superior to steady impingement.
|
439 |
Experimental investigation of the thermal performance of gas-cooled divertor plate conceptsHageman, Mitchell D. 04 June 2010 (has links)
Magnetic confinement fusion has the potential to provide a nearly inexhaustible source of energy. Current fusion energy research projects involve conceptual "Tokamak" reactors, inside of which contaminants are "diverted" along magnetic field lines onto collection surfaces called divertor plates. Approximately 15% of the reactor's thermal power is focused on the divertor plates, creating a need for an effective cooling mechanism. Current extrapolations suggest that divertor plates will need to withstand heat fluxes of more than 10 MW/m2. The cooling mechanism will need to use a coolant compatible with the blanket system; currently helium, and use a minimal fraction of the reactor's available pumping power; ie: will need to experience minimal pressure drops. A leading cooling concept is the Helium Cooled Flat Plate Divertor (HCFP). This thesis experimentally examines four variations of the HCFP. The objectives are to: 1. Experimentally determine the thermal performance of the HCFP with a hexagonal pin-fin array in the gap between the impinging jet and the cooled surface over a range of flow rates and incident heat fluxes; 2. Experimentally measure the pressure drop associated with the hexagonal pin-fin array over a range of flow conditions; 3. Determine and compare the thermal performance of and pressure drop associated with the HCFP for two different slot widths, 0.5 mm and 2 mm over a range of flow rates and incident heat fluxes; 4. Compare the performance of the HCFP with a hexagonal pin-fin array with that of the HCFP with a metal-foam insert and the original HCFP; 5. Provide an experimental data set which can be used to validate numerical models of the HCFP design and its variants. 6. Analytically determine the maximum heat flux which the HCFP can be expected to withstand at theoretical operating conditions in the original and pin-fin array configurations.
|
440 |
Thermal transport and photo-induced charge transport in grapheneBenjamin, Daniel 24 August 2011 (has links)
The electronic material graphene has attracted much attention for its unique physical properties such as, linear band structure, high electron mobility, and room temperature ballistic conduction. The possibilities for device applications utilizing graphene show great variety, from transistors for computing to chemical sensors. Yet, there are still several basic physical properties such as thermal conductivity that need to be determined accurately.
This work examines the thermal properties of graphene grown by the chemical vapor deposition technique. The thermoelectric power of graphene is studied in ambient and vacuum environments and is shown to be highly sensitive to surface charge doping. Exploiting this effect, we study the change in thermoelectric power due to introduction of gaseous species. The temperature dependent thermal conductivity of graphene is measured using a comparison method. We show that the major contribution to the thermal conductivity is the scattering of in-plane phonons.
Graphene also shows promise as an optoelectronic material. We probe the Landau level structure of graphene in high magnetic fields using a differential photoconductivity technique. Using this method we observed the lifting of spin and valley degeneracies of the lowest Landau level in graphene.
|
Page generated in 0.0868 seconds