Spelling suggestions: "subject:"heat btransfer enhancement"" "subject:"heat btransfer anhancement""
1 |
Hydrophobic plasma polymer films for dropwise condensation of steamBonnar, Mark Paul January 1997 (has links)
No description available.
|
2 |
Combined effect of electric field and surface modification on pool boiling of R-123Ahmad, Syed Waqas January 2012 (has links)
The effect of surface modification and high intensity electric field (uniform and non – uniform) acting separately or in combination on pool boiling of R-123 is presented in this thesis. The effect of surface modification was investigated on saturated pool boiling of R-123 for five horizontal copper surfaces modified by different treatments, namely: an emery polished surface, a fine sandblasted surface, a rough sandblasted surface, an electron beam (EB) enhanced surface and a sintered surface. Each 40 mm diameter heating surface formed the upper face of an oxygen-free copper block, electrically heated by embedded cartridge heaters. The experiments were performed from the convective heat transfer regime to the critical heat flux, with both increasing and decreasing heat flux, at 1.01 bar, and additionally at 2 bar and 4 bar for the emery polished surface. Significant enhancement of heat transfer with increasing surface modification was demonstrated, particularly for the EB enhanced and sintered surfaces. The emery polished and sandblasted surface results are compared with nucleate boiling correlations and other published data. The effect of uniform and non-uniform electric fields on saturated pool boiling of R-123 at 1.01 bar pressure was also examined. This method of heat transfer enhancement is known as electrohydrodynamic abbreviated as EHD-enhancement. A high voltage potential was applied at the electrode located above the heating surface, which was earthed. The voltage was varied from 0 to 30 kV. The uniform electric field was provided through a 40 mm diameter circular electrode of stainless steel 304 wire mesh having an aperture of 5.1 mm, while the non-uniform electric field was obtained by using a 40 mm diameter circular rod electrode with rods 5 and 8 mm apart. The effect of uniform electric field was investigated using all five modified surfaces, i.e. emery polished, fine sandblasted, rough sandblasted, EB enhanced and sintered surfaces, while non – uniform electric field was tested using the emery polished, fine sandblasted, EB enhanced and sintered surfaces. The effect of pressure on EHD enhancement was also examined using emery polished surface at saturation pressure of 2 and 4 bars while the electric field was fix at 20 kV corresponding to 2 MV/m. Further, the bubble dynamics is presented for the emery polished surface obtained using a high-speed high – resolution camera.
|
3 |
MEASUREMENT OF HEAT TRANSFER ENHANCEMENT AND PRESSURE DROP FOR TURBULENCE ENHANCING INSERTS IN LIQUID-TO-AIR MEMBRANE ENERGY EXCHANGERS (LAMEEs)2014 April 1900 (has links)
The fluid flow channels of modern heat exchangers are often equipped with different flow disturbance elements which enhance the convective heat transfer coefficient in each channel. These structural or surface roughness elements induce enhanced flow mixing and convective heat transfer at low Reynolds numbers (500 < Re < 2200) by fluid mixing near the channel walls and increasing the surface area. These elements, however, are accompanied by higher pressure drops in comparison to hollow smooth channels (without inserts).
The Run-Around Membrane Energy Exchanger (RAMEE) system is an air-to-air energy recovery system comprised of two remote liquid-to-air membrane energy exchangers (LAMEEs) coupled by a pumped liquid desiccant loop. LAMEEs use semi-permeable membranes that are permeable to water vapor, but impermeable to liquid water. The membranes separate the liquid desiccant from the air flow channels, while still allowing both heat and water vapor transfer. The air channels are equipped with turbulence enhancing inserts which serve dual purposes: (a) to support the adjacent flexible membranes, and (b) to enhance the convective heat and mass transfer.
This research experimentally investigates the increase in the air pressure drop and average convective heat transfer coefficient after an air-side insert is installed in a Small-scale wind tunnel for exchanger insert testing (WEIT) facility that is designed to simulate the air channels of a LAMEE and to measure all the properties required to determine the flow friction factor and Nusselt number. Experiments are conducted in the test section under steady state conditions at Reynolds numbers between 900 and 2200 for a channel with and without inserts. The 500-mm-long test section has a rectangular cross section (5 mm wide and 152.4 mm high) and is designed to maintain a specified constant heat flux on each side wall. The flow is laminar and hydrodynamically fully developed at the entrance of the test section and, within the test section, thermal development occurs.
Nine different insert panels are tested. Each insert is comprised of several plastic rib spacers, each aligned parallel to the stream-wise direction, and several cross-bars aligned normal to the flow direction. The plastic rib spacers are placed either 30 mm, 20 mm or 10 mm apart, and the distance between the cylindrical bars is either 30 mm, 45 mm, 60 mm or 90 mm. The measured convective heat transfer coefficient and the friction factor have uncertainties that are less than ±7% and ±11%, respectively.
It is found that the Nusselt number and friction factor are dependent on the insert geometry and the Reynolds number. An empirical correlation is developed for the inserts to predict Nusselt number and friction factor within an air channel of a LAMEE. The correlations are able to determine the Nusselt number and the friction factor within ±9% and ±20% of the experimental data. Results show the flow insert bar spacing is the most important factor in determining the convective heat transfer improvement.
As an application of the experimental data in this thesis, the experimental and the numerical results from a LAMEE which has an insert in each airflow channel are presented. The results show that the insert within the air channel of the LAMEE is able to improve the total effectiveness of the LAMEE by 4% to 15% depending on the insert geometry and air flow Reynolds number and operating inlet conditions for the exchanger.
|
4 |
Thermal performance and heat transfer enhancement of parabolic trough receivers – numerical investigation, thermodynamic and multi-objective optimisationMwesigye, Aggrey January 2015 (has links)
Parabolic trough systems are one of the most commercially and technically developed
technologies for concentrated solar power. With the current research and development
efforts, the cost of electricity from these systems is approaching the cost of electricity from
medium-sized coal-fired power plants. Some of the cost-cutting options for parabolic trough
systems include: (i) increasing the sizes of the concentrators to improve the system’s
concentration ratio and to reduce the number of drives and controls and (ii) improving the
system’s optical efficiency. However, the increase in the concentration ratios of these systems
requires improved performance of receiver tubes to minimise the absorber tube
circumferential temperature difference, receiver thermal loss and entropy generation rates in
the receiver. As such, the prediction of the absorber tube’s circumferential temperature
difference, receiver thermal performance and entropy generation rates in parabolic trough
receivers therefore, becomes very important as concentration ratios increase. In this study, the thermal and thermodynamic performance of parabolic trough receivers at
different Reynolds numbers, inlet temperatures and rim angles as concentration ratios
increase are investigated. The potential for improved receiver thermal and thermodynamic
performance with heat transfer enhancement using wall-detached twisted tape inserts,
perforated plate inserts and perforated conical inserts is also evaluated.
In this work, the heat transfer, fluid flow and thermodynamic performance of a parabolic
trough receiver were analysed numerically by solving the governing equations using a
general purpose computational fluid dynamics code. SolTrace, an optical modelling tool that
uses Monte-Carlo ray tracing techniques was used to obtain the heat flux profiles on the
receiver’s absorber tube. These heat flux profiles were then coupled to the CFD code by
means of user-defined functions for the subsequent analysis of the thermal and
thermodynamic performance of the receiver. With this approach, actual non-uniform heat
flux profiles and actual non-uniform temperature distribution in the receiver different from
constant heat flux profiles and constant temperature distribution often used in other studies
were obtained.
Both thermodynamic and multi-objective optimisation approaches were used to obtain
optimal configurations of the proposed heat transfer enhancement techniques. For
thermodynamic optimisation, the entropy generation minimisation method was used.
Whereas, the multi-objective optimisation approach was implemented in ANSYS
DesignXplorer to obtain Pareto solutions for maximum heat transfer and minimum fluid
friction for each of the heat transfer enhancement techniques.
Results showed that rim angles lower than 60o gave high absorber tube circumferential
temperature differences, higher receiver thermal loss and higher entropy generation rates,
especially for flow rates lower than 43 m3/h. The entropy generation rates reduced as the inlet
temperature increased, increased as the rim angles reduced and as concentration ratios
increased. Existence of an optimal Reynolds number at which entropy generation is a
minimum for any given inlet temperature, rim angle and concentration ratio is demonstrated.
In addition, for the heat transfer enhancement techniques considered, correlations for the
Nusselt number and fluid friction were obtained and presented. With heat transfer
enhancement, the thermal efficiency of the receiver increased in the range 5% – 10%, 3% – 8% and 1.2% – 8% with twisted tape inserts, perforated conical inserts and perforated
plate inserts respectively. Results also show that with heat transfer enhancement, the absorber
tube’s circumferential temperature differences reduce in the range 4% – 68%, 3.4 – 56% and
up to 67% with twisted tape inserts, perforated conical inserts and perforated plate inserts
respectively. Furthermore, the entropy generation rates were reduced by up to 59%, 45% and
53% with twisted tape inserts, perforated conical inserts and perforated plate inserts
respectively. Moreover, using multi-objective optimisation, Pareto optimal solutions were
obtained and presented for each heat transfer enhancement technique.
In summary, results from this study demonstrate that for a parabolic trough system, rim
angles, concentration ratios, flow rates and inlet temperatures have a strong influence on the
thermal and thermodynamic performance of the parabolic trough receiver. The potential for
improved receiver thermal and thermodynamic performance with heat transfer enhancement
has also been demonstrated. Overall, this study provides useful knowledge for improved
design and efficient operation of parabolic trough systems. / Thesis (PhD)--University of Pretoria, 2015. / tm2015 / Mechanical and Aeronautical Engineering / PhD / Unrestricted
|
5 |
Thermal Performance of an Air Channel with Cylindrical Cross-barsCoetzee, Frans Jozef Jacobus January 2021 (has links)
Heat exchangers are used in a wide variety of industrial applications. Augmentation of heat transfer can realize a reduction in heat transfer size and increase the effectiveness and efficiency of heat exchangers. Heat transfer can be enhanced with various methods where the turbulence of the fluid flow is enhanced: by adding ribs, grooves or steps to the channel wall, using helical inserts, or by adding bluff bodies in the channel flow. By using these methods, there is also an increase in pressure drop penalty and larger pumping power is required to achieve the same flow rate. Circular cylindrical bluff bodies have been found to have smaller drag coefficients than square, rectangular or triangular cylindrical bluff bodies in the channel flow.
Heat transfer and pressure drop experimental tests were done for eight different circular cylindrical cross-bar arrays at 15 different Reynolds numbers, in the range of 640 to 12 500. Eight different cross-bar configurations were tested: the cylinder diameter to pitch ratios were, d/p = 0.025, d/p = 0.05, d/pi=i0.1 and d/p = 0.2, and the angle to the flow direction, was θ = 90° and θ = 45° for each of the four different diameter-to-pitch ratios.
Transient CFD simulations were done using Ansys fluent for d/p = 0.05 and d/p = 0.2, for θ = 90°, at Reynolds numbers 920 and 9 700, to analyze the secondary flow structures in the wake of the cylinders, partly responsible for the heat transfer and pressure drop increase in the channel flow in comparison to the smooth channel. The k-Ω shear stress transport (SST) model was used for the simulations. A mesh dependence study was done for spatial discretization, temporal discretization and validated against the experimental setup.
The pressure drop gradient was found from the test data for the hydraulically developed part of the test section to calculate the friction factors. With an increase in Reynolds number, the friction factors decreased until reaching an asymptotic value for all the cross-bar configurations. For θi=i90° the friction factors were larger than for θ = 45° for the same d/p ratio and Reynolds number. With an increase in d/p, the friction factors increased. The largest measured friction factor was f = 0.3, for configuration d/p = 0.2, θ = 90°, at Re = 640 and the smallest measured friction factor f = 0.02, for d/pi= 0.025, θ = 45°, at Re = 12 500. The friction factor ratio was then used to quantify the pressure penalty for using cylindrical cross-bars in the channel flow to enhance heat transfer. The maximum friction factor ratio, f/f0 = 16.7 occurred at Re = 9 700, for d/pi=i0.2, θ = 90° and the minimum friction factor ratio, f/f0 = 2.1, at Re = 640, for d/pi=i0.025, θ = 45°.
The average Nusselt numbers were then calculated using the spatial integral average of the local Nusselt numbers. With an increase in Reynolds number, there was an increase in the average Nusselt number for all the cylindrical cross-bar configurations. For larger d/p ratios and θ = 90° cases, the average Nusselt numbers were larger than for smaller d/p ratios and θ = 45°. The largest average Nusselt number was Nuavg = 66.3, at Re = 9 700 for d/p = 0.2, θ = 90° and the smallest average Nusselt number, Nuavg = 8.7, at Re = 640 for d/p = 0.025, θ = 45°. The Nusselt number ratio could then be used to quantify the heat transfer enhancement of the cylindrical cross-bar channel to that of the smooth channel, where the largest Nusselt number ratio was, Nuavg /Nu0,avg = 3.3, for d/p = 0.2, θ = 90°, at Rei=i3 000 and the smallest Nuavg /Nu0,avg = 1.1, for d/p = 0.025, θ = 45°, at Re = 640.
The CFD results concluded that the pressure drop increase and heat transfer enhancement were caused by the flow acceleration, flow separation, eddy formation, vorticity increase, and boundary layer deformation next to and behind the cylinders. The Strouhal number for the larger d/p ratios suggested that the unsteadiness in the flow is higher for the cylinder arrays with a larger diameter, increasing both the heat transfer enhancement and friction factor in comparison with the smaller diameter cylinder arrays.
Finally, the thermal performance coefficients could be calculated by using the friction factor ratios and Nusselt number ratios. The thermal performance coefficient combines the effects of the heat transfer and pressure penalty increase. The thermal performance coefficients increased from Re = 640 until Rei=i3 000 after which it decreased with an increase in Reynolds number. This is because the pressure penalty starts to outweigh the heat transfer increase caused by the turbulators. The largest thermal performance coefficient was η = 1.6, for d/p = 0.025, θ = 45°, at Re = 3 000, and the lowest, η = 0.79, for d/p = 0.05, θ = 90°, at Re = 640. / Dissertation (MEng (Mechanical Engineering))--University of Pretoria, 2021. / Mechanical and Aeronautical Engineering / MEng (Mechanical Engineering) / Unrestricted
|
6 |
Heat Transfer to a Droplet Translating in an Electric FieldSubramanian, Rajkumar 27 May 2005 (has links)
No description available.
|
7 |
Electric Field Driven Enhancement of Heat and Mass Transfer to a Liquid DropAbdelaal, Mohamed Riad Mohamed January 2011 (has links)
No description available.
|
8 |
Experimental investigation of turbine blade platform film cooling and rotational effect on trailing edge internal coolingWright, Lesley Mae 02 June 2009 (has links)
The present work has been an experimental investigation to evaluate the
applicability of gas turbine cooling technology. With the temperature of the mainstream
gas entering the turbine elevated above the melting temperature of the metal components,
these components must be cooled, so they can withstand prolonged exposure to the
mainstream gas. Both external and internal cooling techniques have been studied as a
means to increase the life of turbine components.
Detailed film cooling effectiveness distributions have been obtained on the
turbine blade platform with a variety of cooling configurations. Because the newly
developed pressure sensitive paint (PSP) technique has proven to be the most suitable
technique for measuring the film effectiveness, it was applied to a variety of platform
seal configurations and discrete film flows. From the measurements it was shown
advanced seals provide more uniform protection through the passage with less potential
for ingestion of the hot mainstream gases into the engine cavity.
In addition to protecting the outer surface of the turbine components, via film
cooling, heat can also be removed from the components internally. Because the turbine blades are rotating within the engine, it is important to consider the effect of rotation on
the heat transfer enhancement within the airfoil cooling channels. Through this
experimental investigation, the heat transfer enhancement has been measured in narrow,
rectangular channels with various turbulators. The present experimental investigation
has shown the turbulators, coupled with the rotation induced Coriolis and buoyancy
forces, result in non-uniform levels of heat transfer enhancement in the cooling channels.
Advanced turbulator configurations can be used to provide increased heat transfer
enhancement. Although these designs result in increased frictional losses, the benefit of
the heat transfer enhancement outweighs the frictional losses.
|
9 |
Study of Donut Type Water Cooling Element for ChipCheng, Yu-Wei 21 July 2004 (has links)
In recent years, the electronic chip is continuously developing in turning high performance. This trend urges the heat sink of electronic chip to become gradually important, and then that will develop many type of heat sink, which is water-cooling system. Therefore, the purpose of this paper is designing a high efficiency water-cooling element (WCE).
The present study mainly aims at three points to bring up: (1) The different type chamber make use of the CFD package software FLUENT to study the pressure drop, velocity field and turbulent intensity deposition. (2) The different plank thickness, thermal conductivity and convection heat transfer coefficient use finite difference method to solve heat diffusion equation, and to confer thermal resistance value. (3) Then, machined this designed WCE and then measured its thermal resistance value.
The results show: (1) The pressure drop main effect parameter is inlet velocity. (2) The thermal resistance value main effect parameter is convection heat transfer coefficient. (3) The plank thickness is inverse proportion relation with thermal resistance value. (4) The surface temperature range and mean surface temperature should become reference index in heat sink developmental process. (5) The cooling performance of Type D WCE is optimum in this paper. (6) The design is cross groove on convection surface, which should reduce thermal resistance value.
|
10 |
Heat Transfer Enhancement With NanofluidsOzerinc, Sezer 01 May 2010 (has links) (PDF)
A nanofluid is the suspension of nanoparticles in a base fluid. Nanofluids are promising for heat transfer enhancement due to their high thermal conductivity. Presently, discrepancy exists in nanofluid thermal conductivity data in the literature, and enhancement mechanisms have not been fully understood yet. In the first part of this study, a literature review of nanofluid thermal conductivity is performed. Experimental studies are discussed through the effects of some parameters such as particle volume fraction, particle size, and temperature on conductivity. Enhancement mechanisms of conductivity are summarized, theoretical models are explained, model predictions are compared with experimental data, and discrepancies are indicated.
Nanofluid forced convection research is important for practical application of nanofluids. Recent experiments showed that nanofluid heat transfer enhancement exceeds the associated thermal conductivity enhancement, which might be explained by thermal dispersion, which occurs due to random motion of nanoparticles. In the second part of the study, to examine the validity of a thermal dispersion model, hydrodynamically developed, thermally developing laminar Al2O3/water nanofluid flow inside a circular tube under constant wall temperature and heat flux boundary conditions is analyzed by using finite difference method with Alternating Direction Implicit Scheme. Numerical results are compared with experimental and numerical data in the literature and good agreement is observed especially with experimental data, which indicates the validity of the thermal dispersion model for explaining nanofluid heat transfer. Additionally, a theoretical analysis is performed, which shows that usage of classical correlations for heat transfer analysis of nanofluids is not valid.
|
Page generated in 0.0955 seconds