Spelling suggestions: "subject:"heat btransfer model"" "subject:"heat btransfer godel""
1 |
Boiling Heat Transfer in Horizontal Micro-Fin TubesTang, Soon Seng 12 May 2001 (has links)
Two existing evaporation two-phase heat transfer models are validated using 526 experimental data points for pure refrigerants and refrigerant mixtures. The Kido et al. (1995) model fails to predict pure refrigerant data sets except their R22 experimental data set. The Cavallini et al. (1999) model successfully predicts the available R22 data sets; however, the model over-predicts the R12 and the R134a data sets. In addition, the Cavallini et al. (1999) mixture model fails to predict the available 155 refrigerant mixture data points. The proposed modified model, based on the Cavallini et al. (1999) model, successfully predicts the experimental data for pure refrigerant and for refrigerant mixtures.
|
2 |
TOWARDS MODELING HEAT TRANSFER USING A LATTICE BOLTZMANN METHOD FOR POROUS MEDIABanete, Olimpia 16 May 2014 (has links)
I present in this thesis a fluid flow and heat transfer model for porous media using the lattice Boltzmann method (LBM). A computer simulation of this process has been developed and it is written using MATLAB software. The simulation code is based on a two dimensional model, D2Q9. Three physical experiments were designed to prove the simulation model through comparision with numerical results. In the experiments, physical properties of the air flow and the porous media were used as input for the computer model. The study results are not conclusive but show that the LBM model may become a reliable tool for the simulation of natural convection heat transfer in porous media.
Simulations leading to improved understanding of the processes of air flow and heat transfer in porous media may be important into improving the efficiency of methods of air heating or cooling by passing air through fragmented rock.
|
3 |
Spalovací komora Stirlingova motoru o výkonu do 3 kW / Stirling engine 3kW combustion chamberMatuška, Petr January 2012 (has links)
This thesis deals with the construction proposal of the combustion chamber of Stirling engine. The introduction briefly describes the history and practical application of Stirlinova engine today. The following section explains the differences between theoretical and real cycle and the principle of beta Stirling engine modifications. The next section is devoted to the calculation of fuel and air consumption and fuel compared to each other. The proposed design is based not only on the calculation of fuel and air, but also heat transfer between flue gas and preheated air. The last part is devoted to calculating the flow of LPG and flow model of the combustion chamber.
|
4 |
Energy efficiency in commercial buildings in South Africa : A study of interior ceiling temperature distribution and measures to decrease the cooling demand in buildings in Pretoria, South AfricaGöthberg, Astrid, Tasevski, Josephine January 2020 (has links)
This study aims to investigate opportunities to make commercial buildings in Pretoria, South Africa, more energy efficient, which is made by examining prerequisites in South Africa. To achieve this objective, barriers and measures to decrease cooling demand are investigated by a qualitative approach and a roof heat transfer model is developed to get a deeper understanding of the ceiling temperature distribution. The heat transfer model is simulated in MATLAB and is further validated by conducting a two-case scenario sensitivity analysis and by comparing the results to previous research. The results show that there is a great correlation between the Global Horizontal Irradiance [GHI] and the interior ceiling temperature and a higher GHI contributes to a higher ceiling temperature. The hot climate and the long summer period in South Africa indicate that there is a great demand for cooling during a year. Regarding barriers, the socioeconomic aspects in the country and the low electricity prices may contribute to less willingness to adapt to an environmentally friendly behaviour. As some technologies are still perceived as expensive, this may also provide a lower willingness to make changes regarding choices that contribute to a lower cooling demand and thus, energy consumption. Finally, it is concluded that there are several measures that can be applied to decrease the cooling demand, such as constructional changes or enhancement of the heating, ventilation and air-conditioning [HVAC] operation.
|
5 |
Design of a Vortex Tube based Refrigeration SystemChatterjee, Aritra January 2017 (has links) (PDF)
Vortex tube (VT) is a mechanical device with no moving parts. The fundamental principle of Vortex Tube is that it can split an incoming fluid flow of a constant pressure and constant temperature gas stream into two separate low pressure streams, one having higher enthalpy and the other having lower enthalpy than the inlet flow. So this device essentially works as a temperature separator. On separation from the device, a warmer flow exits through a terminal which is called the “hot end” and a low temperature stream comes out from another terminal known as the “cold end”. Just with a few bar pressure of compressed air at room temperature can produce a hot stream temperature of about 150°C and a cold stream temperature of about - 40°C. This temperature separation scheme allows us to get cooling and heating effect simultaneously using the same device which makes the Vortex tube one of the popular mechanical equipment and is used in many fields of engineering. The cooling or heating effect produced by this device is largely dependent on geometric parameters of the device itself. Since no exact theoretical correlation is there between the geometric parameters and the cooling (or heating) effect produced, VT design is solely based on empirical relations. There are quite a few geometric parameters which affect the cooling effect of this device and all the empirical correlation are needed to design the optimum VT for maximum cooling/heating effect. These relations can be derived in two ways, either by numerical methods or by experimental investigations. The first part of the thesis important geometric parameter of the VT namely the ratio of the “cold end” diameter (to the “tube diameter” , which has been numerically optimized in this work to achieve maximum temperature separation.
In our efforts to design a VT based refrigeration system, optimization of the VT itself is not enough. A suitable heat exchanger (HX) which can extract the cold enthalpy from the VT also needs to be designed and cascaded with the VT to get the complete refrigeration system. The second part of the thesis is solely dedicated to the design of a suitable HX that can be used alongside a VT to produce refrigeration. The HXs design can be approached from two directions, dimensional aspect and material aspect. Rather than focusing on the dimensional aspect in this work we have concentrated of the material aspect of HX design. It is fairly obvious that the thermal conductivity (TC) of the HX material will play a crucial role on the cooling effect of the refrigeration system. Conventional metals with high TC can be used to design HXs but the downsides of using pure metals such as Copper, Iron are that they are heavy, quite expensive and highly reactive to corrosive fluids. Because of this, high TC ceramic material such as Aluminium Nitride (AlN) is quite often used to fabricate HXs and they are used for spot cooling in electronic systems. AlN has TC of 160 W/m-K which is high but not as high as of Copper or Iron. TC of AlN can be increased by mixing the right volume fraction of metal powder (such as pure Aluminium) with it to a great extent. So in a nutshell, instead of using pure AlN, if we use the particle reinforced binary composite [AlN + Al (powder)] to design a HX, we would achieve the benefits of having high TC as well as properties such as anti-corrosiveness, cost effectiveness and weight reduction.
In the above context, prediction of TC of particle reinforced composite materials containing a base material of low TC and a filler material of high TC is of utmost importance. Till now a very few analytical heat transfer models are available in the literature that can accurately predict the TC value of such composites especially when high volume fraction of filler particles is added to the base material or if more than one type of filler particles are added. So in this thesis, three analytical heat transfer models have been developed that can predict the TC of binary as well as tertiary particle reinforced composites.
The third and the final segment of the thesis deals with the performance study of a refrigeration system comprised of the optimized VT cascaded with a suitable HX made out of a particle reinforced composite material. The numerical results show how the HX effectiveness improves as the volume fraction of the filler particles in the composite increases.
The key results of the works described in the thesis are as follows:
• Through extensive numerical simulations it is shown that for = 0.5, the temperature separation in a VT is maximum.
• The heat transfer models developed to predict the thermal conductivity of binary composites, shows the trend of how thermal conductivity varies with increasing volume fraction of filler. It has been shown that initially the thermal conductivity increases linearly with a small slope, then after a critical volume fraction an abrupt increment of slope is observed due to the formation of continuous heat conduction paths within the composite. Further increase in volume fraction shows linear increment of thermal conductivity with lesser slope as before.
• The heat transfer model developed to predict the thermal conductivity of tertiary
composites is suitable for low volume fraction (< 20 %). The model shows the addition of one component into the base matrix affects the distribution of the other
component which is observed through the covariance.
• The last part of the thesis shows that compared to a pure AlN heat exchanger, a heat exchanger made of AlN + 30 % volume fraction of pure Aluminium powder, has increased heat exchanger effectiveness by more than 50 %.
Thesis outline is as follows:
• Chapter 1 is a brief introduction to Vortex Tube.
• Chapter 2 deals with the necessary literature review related to Vortex Tube as well as presently available heat transfer models that are equipped to handle composite materials to predict their TC.
• Chapter 3 elaborates numerical modeling and optimization of a critical parameter
( to achieve maximum temperature separation in a VT.
• Chapter 4 presents a stochastic heat transfer model to estimate the TC of Binary particle reinforced composites containing low volume fraction of filler particles.
• Chapter 5 describes the development of a computational heat transfer model to predict the TC of Particle Reinforced Binary Composite materials containing high volume fraction of filler element.
• Chapter 6 deals with a stochastic heat transfer model to calculate TC of Particle Reinforced Tertiary Composite materials containing low volume fractions of filler elements.
• Chapter 7 consolidates all the necessary concepts and data from previous chapters to design the final cascaded VT based refrigeration system and presents a performance study.
• The last chapter summarizes the entire work along with scope for future work.
|
6 |
Výpočty proudění a přenosu tepla pro optimalizaci konstrukce bubnové sušičky prádla / Computations of fluid flow and heat transfer for design optimization of tumble clothes dryerČermák, Martin January 2013 (has links)
V rámci této práce byla provedena komplexní analýza elektricky vyhřívané bubnové sušičky prádla s cílem identifikovat možnosti optimalizace její konstrukce vedoucí ke zlepšení přestupu tepla. Pro řešení byl zvolen postup využívající výpočtovou dynamiku tekutin (CFD). K dosažení dostatečně detailního popisu zadaného problému byl využit komerční software Fluent společně se speciálně vyvinutým modelem přenosu tepla.
|
7 |
A NUMERICAL MODEL OF HEAT- AND MASS TRANSFER IN POLYMER ELECTROLYTE FUEL CELLS : A two-dimensional 1+1D approach to solve the steady-state temperature- and mass- distributionsSkoglund, Emil January 2021 (has links)
Methods of solving the steady state characteristics of a node matrix equation system over a polymer electrolyte fuel cell (PEFC) were evaluated. The most suitable method, referred to as the semi-implicit method, was set up in a MATLAB program. The model covers heat transfer due to thermal diffusion throughout the layers and due to thermal advection+diffusion in the gas channels. Included mass transport processes cover only transport of water vapor and consist of the same diffusion/advection schematics as the heat transfer processes. The mass transport processes are hence Fickian diffusion throughout all the layers and diffusion+advection in the gas channels. Data regarding all the relevant properties of the layer materials were gathered to simulate these heat- and mass transfer processes.Comparing the simulated temperature profiles obtained with the model to the temperature profiles of a previous work’s model, showed that the characteristics and behavior of the temperature profile are realistic. There were however differences between the results, but due to the number of unknown parameters in the previous work’s model it was not possible to draw conclusions regarding the accuracy of the model by comparing the results.Comparing the simulated water concentration profiles of the model and measured values, showed that the model produced concentration characteristics that for the most part alignedwell with the measurement data. The part of the fuel cell where the concentration profile did not match the measured data was the cathode side gas diffusion layer (GDL). This comparison was however performed with the assumption that relative humidity corresponds to liquid water concentration, and that this liquid water concentration is in the same range as the measured data. Because of this assumption it was not possible to determine the accuracy of the model.
|
8 |
The rate-limiting mechanism for the heterogeneous burning of iron in normal gravity and reduced gravityWard, Nicholas Rhys January 2007 (has links)
This thesis presents a research project in the field of oxygen system fire safety relating to the heterogeneous burning of iron in normal gravity and reduced gravity. Fires involving metallic components in oxygen systems often occur, with devastating and costly results, motivating continued research to improve the safety of these devices through a better understanding of the burning phenomena. Metallic materials typically burn in the liquid phase, referred to as heterogeneous burning. A review of the literature indicates that there is a need to improve the overall understanding of heterogeneous burning and better understand the factors that influence metal flammability in normal gravity and reduced gravity. Melting rates for metals burning in reduced gravity have been shown to be higher than those observed under similar conditions in normal gravity, indicating that there is a need for further insight into heterogeneous burning, especially in regard to the rate-limiting mechanism. The objective of the current research is to determine the cause of the higher melting rates observed for metals burning in reduced gravity to (a) identify the rate-limiting mechanism during heterogeneous burning and thus contribute to an improved fundamental understanding of the system, and (b) contribute to improved oxygen system fire safety for both ground-based and space-based applications. In support of the work, a 2-s duration ground-based drop tower reduced-gravity facility was commissioned and a reduced-gravity metals combustion test system was designed, constructed, commissioned and utilised. These experimental systems were used to conduct tests involving burning 3.2-mm diameter cylindrical iron rods in high-pressure oxygen in normal gravity and reduced gravity. Experimental results demonstrate that at the onset of reduced gravity, the burning liquid droplet rapidly attains a spherical shape and engulfs the solid rod, and that this is associated with a rapid increase in the observed melting rate. This link between the geometry of the solid/liquid interface and melting rate during heterogeneous burning is of particular interest in the current research. Heat transfer analysis was performed and shows that a proportional relationship exists between the surface area of the solid/liquid interface and the observed melting rate. This is confirmed through detailed microanalysis of quenched samples that shows excellent agreement between the proportional change in interfacial surface area and the observed melting rate. Thus, it is concluded that the increased melting rates observed for metals burning in reduced gravity are due to altered interfacial geometry, which increases the contact area for heat transfer between the liquid and solid phases. This leads to the conclusion that heat transfer across the solid/liquid interface is the rate-limiting mechanism for melting and burning, limited by the interfacial surface area. This is a fundamental result that applies in normal gravity and reduced gravity and clarifies that oxygen availability, as postulated in the literature, is not rate limiting. It is also established that, except for geometric changes at the solid/liquid interface, the heterogeneous burning phenomenon is the same at each gravity level. A conceptual framework for understanding and discussing the many factors that influence heterogeneous burning is proposed, which is relevant to the study of burning metals and to oxygen system fire safety in both normal-gravity and reduced-gravity applications.
|
Page generated in 0.0754 seconds