• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 65
  • 43
  • 14
  • 11
  • 6
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 185
  • 185
  • 170
  • 54
  • 40
  • 33
  • 33
  • 26
  • 26
  • 25
  • 24
  • 23
  • 22
  • 20
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Greater Toronto Area Urban Heat Island: Analysis of Temperature and Extremes

Mohsin, Tanzina 17 January 2012 (has links)
This study analyzes the trends in temperature, and their extremes, in the Greater Toronto Area (GTA) in the context of urban heat island. The trends in annual and seasonal temperature changes were investigated in the GTA over the past century and a half with special focus on 1970-2000. The Mann-Kendall test is used to assess the significance of the trends and the Theil-Sen slope estimator is used to identify their magnitude. Statistically significant increasing trends for mean and minimum temperatures are observed mainly at the urban and suburban stations. The sequential Mann-Kendall test is used to identify any abrupt change in the time series of temperature (31 -161 years), and the results indicate that increasing trend for annual mean temperature has started after 1920 at Toronto downtown, after the 1960s at the suburban stations, and has increased significantly during the 1980s at all stations, which is consistent with the pace of urbanization during these periods in the GTA. The observed urban heat island (UHI) in Toronto is quantified and characterized by considering three different rural stations. The UHI intensity (∆Tu-r) in Toronto is categorized as winter dominating or summer dominating depending on the choice of a rural station. The results from the trend analysis of annual and seasonal ∆Tu-r suggest that the choice of the rural station is crucial in the estimation of ∆Tu-r, and thus can overestimate or underestimate its prediction depending on the location and topographical characteristics of a rural station relative to the urban station. The trends in extreme temperature indices are also investigated and the results indicate that indices based on daily maximum temperature are more pronounced at the urban and suburban stations compared to that at the rural stations. The changes in the trends for extreme indices based on daily minimum temperature are consistent at all stations for the period of 1971-2000. With the decrease in the percentage of cold nights and the increase in the percentage of warm nights, the diurnal temperature range has decreased throughout the GTA region. The analysis of heating degree days and cooling degree days revealed that the former is associated with decreasing trends and the latter exhibited increasing trends at almost all stations in the GTA. Finally, it is evident from the results that urban heat island phenomenon exerts warmer influence on the climate in cities, and with the current pace of urbanization in the GTA, it is imperative to understand the potential impact of the emerging UHI on humans and society.
52

Summertime urban heat island effect in high-rise high-density residential development in the inner-city of Guangzhou, China

Wu, Xiaoling, 吳小玲 January 2009 (has links)
published_or_final_version / Architecture / Master / Master of Philosophy
53

Quantifying the urban heat island (UHI) intensity in Hong Kong

Siu, Leong-wai., 蕭亮煒. January 2011 (has links)
published_or_final_version / Geography / Master / Master of Philosophy
54

Spring flowering trends in Alberta, Canada: response to climate change, urban heat island effects, and an evaluation of a citizen science network

Beaubien,Elisabeth G Unknown Date
No description available.
55

Measuring the spatial correlation between temperature and vulnerability across the urban environment

Morano, Kaitlin 12 January 2015 (has links)
This thesis aims to examine the spatial relationship between elevated air temperatures and populations most vulnerable to heat across the urban environment. To assess this correlation, the analysis focuses on the cities of Atlanta, Georgia and Minneapolis, Minnesota. A three-part methodology was employed: first, continuous air temperature was estimated using satellite imagery and weather station observations; second, a heat vulnerability index was generated based on demographic, social, and environmental variables at the Census block group level; and third, a spatial statistical analysis was performed to measure the correlation between the hottest temperatures and the populations most vulnerable to heat. Finally, the thesis concludes with policy recommendations that address the comprehensive nature of vulnerability in relation to extreme heat. As municipalities and local governments plan for a future with warmer temperatures and larger urban populations, effective policies must be designed with respect to both the social and physical environments; the results herein can help inform such strategies.
56

Urban design factors influencing outdoor temperature in high-rise high-density residential developments in the coastal zone of Hong Kong

Renganathan, Giridharan. January 2005 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2005. / Title proper from title frame. Also available in printed format.
57

Recognition of potential heat and water tradeoffs in vegetation-based city-level climate adaptation policies in arid and semi-arid environments

Hines, Edward 31 July 2017 (has links)
The primary objectives of this study are to understand if and how cities are adapting to heat and water stress and to characterize their understanding of the potential tradeoffs associated with vegetation-based strategies. I address these objectives using two approaches: a comparative analysis of climate adaptation and sustainability planning documents in cities vulnerable to heat and water stress and an in-depth case study of the response to heat and water threats in Los Angeles. The comparative analysis of city plans builds a broad understanding of how cities are planning to adapt to heat and water stress and the degree to which they articulate an understanding of, and mitigate the potential for, maladaptive measures. The Los Angeles case study provides the opportunity to more deeply trace how the process of adapting to heat and water stress has unfolded in a single city. To do so, I locate the city’s contemporary policies in an historical continuum with previous municipal environmental policy efforts, in local patterns of urban development and their entailing political and economic foundations, and in regional, state, national, and international environmental policy hierarchies.
58

Význam vegetace v utváření klimatických charakteristik v městské zástavbě / The importance of vegetation for climate forming in urban areas.

MARVALOVÁ, Jindra January 2016 (has links)
Urban heat island is a phenomenon of different temperatures in cities compared to temperatures in the surrounding landscape. The intensity of this phenomenon can be influenced by the presence of vegetation in cities. There is evaluated the effect of vegetation on microclimate in various parts of the city České Budějovice in this thesis. The assessment is based on the evaluation of multispectral Landsat satellite images and thermal images, which were taken in-situ using thermal camera, and their statistical processing. The results show statistically significant differences in surface temperatures in the different areas of the city with a different amount of vegetation. Surface temperatures are significantly lower in areas with a large amount of vegetation than in areas without vegetation. Equally, selected vegetation surfaces have lower temperatures compared to anthropogenic surfaces, at least about 9 ° C.
59

A influência dos parques verdes no conforto térmico urbano : estudo de caso em Porto Alegre - RS / The influence of green parks in urban thermal comfort : case study in Porto Alegre - RS

Zorzi, Lizia de Moraes de January 2016 (has links)
O padrão de desenvolvimento das cidades brasileiras nas últimas décadas, com acelerada urbanização, tem mostrado resultados prejudiciais sobre a forma das cidades, a qualidade de vida nelas e o consumo dos recursos naturais. Para promover a sustentabilidade no planejamento urbano é importante adequar o ambiente construído ao clima local, permitindo ao homem viver em conforto e reduzir o consumo dos recursos naturais. Uma das maneiras apontadas para melhorar a qualidade das cidades e o conforto térmico nelas é através da criação de parques verdes. Este trabalho tem por objetivo analisar a influência dos parques verdes no conforto térmico urbano, através de estudo de caso em Porto Alegre/RS. A pesquisa parte da revisão bibliográfica, para explicar como as áreas verdes podem contribuir para o conforto térmico urbano. Para o estudo de caso foi analisada a influência dos parques Farroupilha, Moinhos de Vento e Germânia nos seus entornos, através de medições in loco de temperatura e umidade do ar, principais variáveis de conforto térmico, e de análises de dados de sensoriamento remoto. Utilizando índices que consideram apenas estas duas variáveis, um com base da carta de Givoni e outro no cálculo da Temperatura Efetiva, não foi possível observar correlação entre o conforto térmico e a presença e proximidade dos parques. Entretanto, analisando as variáveis, é possível observar que os parques aumentaram entre 3,54 e 13,94% a umidade relativa do ar e reduziram a temperatura do ar em até 2,3°C. As análises de sensoriamento remoto vão ao encontro destes resultados, chegando 8,6°C as diferenças de temperaturas de superfície obtidas no interior e no entorno dos parques. Os três parques estudados influenciaram nas variáveis de conforto nos seus entornos, sendo o efeito de oásis mais significativo nos parques maiores e com áreas mais arborizadas e superfícies de água. Assim sendo, até mesmo os parques menores contribuem para a redução das ilhas de calor urbano, evitando que as temperaturas dos centros das cidades aumentem ainda mais. / The pattern of development of Brazilian cities in recent decades, with rapid urbanization, have shown harmful results on the morphology of the cities, the quality of life in them and the consumption of natural resources. To promote sustainability in urban planning it is important to adapt the built environment to the local climate, allowing to live in comfort and to reduce the consumption of natural resources. One of the ways aimed at improving the quality of cities and the thermal comfort in them is by creating green parks. This work aims to analyze the influence of green parks in the urban thermal comfort a case study in Porto Alegre / RS. The study of the literature review can explain how green areas can contribute to the urban thermal comfort. For the case study we analyzed the influence of three parks (Farroupilha, Moinhos de Vento and Germânia) with their surroundings by measurements, in situ, of temperature and humidity, the main variables of thermal comfort, and remote sensing data analysis. Using indexes treating only these two variables, one based on the chart of Givoni and the other in the calculation of Effective Temperature, was not observed correlation between thermal comfort and the presence and proximity of the parks. However, analyzing the variables we can observe that the parks have increased of relative air humidity between 3.54 and 13.94% and reduced air temperature of 2.32°C. Remote sensing analysis are in agreement with these results, reaching 8.56°C differences in surface temperatures obtained inside and around the parks. The three parks studied influenced variables the comfort of in their surroundings, with the oasis effect very significant on the largest parks and more wooded areas and water surfaces. Even the smallest parks contribute to the reduction of urban heat islands, preventing temperatures from urban centers to increase further.
60

Pavement Surfaces Impact on Local Temperature and Building Cooling Energy Consumption

January 2015 (has links)
abstract: Pavement surface temperature is calculated using a fundamental energy balance model developed previously. It can be studied using a one-dimensional mathematical model. The input to the model is changed, to study the effect of different properties of pavement on its diurnal surface temperatures. It is observed that the pavement surface temperature has a microclimatic effect on the air temperature above it. A major increase in local air temperature is caused by heating of solid surfaces in that locality. A case study was done and correlations have been established to calculate the air temperature above a paved surface. Validation with in-situ pavement surface and air temperatures were made. Experimental measurement for the city of Phoenix shows the difference between the ambient air temperature of the city and the microclimatic air temperature above the pavement is approximately 10 degrees Fahrenheit. One mitigation strategy that has been explored is increasing the albedo of the paved surface. Although it will reduce the pavement surface temperature, leading to a reduction in air temperature close to the surface, the increased pavement albedo will also result in greater reflected solar radiation directed towards the building, thus increasing the building solar load. The first effect will imply a reduction in the building energy consumption, while the second effect will imply an increase in the building energy consumption. Simulation is done using the EnergyPlus tool, to find the microclimatic effect of pavement on the building energy performance. The results indicate the cooling energy savings of an office building for different types of pavements can be variable as much as 30%. / Dissertation/Thesis / Masters Thesis Mechanical Engineering 2015

Page generated in 0.0742 seconds