Spelling suggestions: "subject:"heat off combustion"" "subject:"heat oof combustion""
101 |
An Investigation of Mist/Air Film Cooling with Application to Gas Turbine Airfoilszhao, lei 18 May 2012 (has links)
Film cooling is a cooling technique widely used in high-performance gas turbines
to protect turbine airfoils from being damaged by hot flue gases. Film injection holes are
placed in the body of the airfoil to allow coolant to pass from the internal cavity to the
external surface. The ejection of coolant gas results in a layer or “film” of coolant gas
flowing along the external surface of the airfoil.
In this study, a new cooling scheme, mist/air film cooling is proposed and
investigated through experiments. Small amount of tiny water droplets with an average
diameter about 7 μm (mist) is injected into the cooling air to enhance the cooling
performance. A wind tunnel system and test facilities were build. A Phase Doppler
Particle Analyzer (PDPA) system is employed to measure droplet size, velocity and
turbulence. Infrared camera and thermocouples are both used for temperature
measurements.
Mist film cooling performance is evaluated and compared against air-only film
cooling in terms of adiabatic film cooling effectiveness and film coverage. Experimental
results show that for blowing ratio M=0.6, net enhancement in adiabatic cooling
effectiveness can reach 190% locally and 128% overall along the centerline. The general
pattern of adiabatic cooling effectiveness distribution of the mist case is similar to that of
the air-only case with the peak at about the same location.
The concept of Film Decay Length (FDL) is proposed to quantitatively evaluate
how well the coolant film covers the blade surface. Application of mist in the M=0.6
condition is apparently superior to the M=1.0 and 1.4 cases due to the higher overall
cooling enhancement, the much longer FDL, and wider and longer film cooling coverage
area.
Based on droplet measurements through PDPA, a profile describing how the airmist
coolant jet flow spreads and eventually blends into the hot main flow is proposed. A
sketch based on the proposed profile is provided. This profile is found to be well
supported by the measurement results of Turbulent Reynolds Stress. The location where
a higher magnitude of Turbulent Reynolds Stress exists, which indicates higher strength
of turbulent mixing effect, is found to be in the close neighborhood of the edge of the
coolant film envelope. Also the separation between the mist droplets layer and the
coolant air film is identified through the measurements. In other words, large droplets
penetrate through the air coolant film layer and travel further over into the main flow.
Based on the proposed air-mist film profile, the heat transfer results are reexamined.
It is found that the location of optimum cooling effect is coincident with the
starting point where the air-mist coolant starts to bend towards the surface. Thus the data
suggests that the “bending back” film pattern is critical in keeping the mist droplets close
to the surface which improves the cooling effectiveness for mist cooling.
|
102 |
A Study on the Integration of a Novel Absorption Chiller into a Microscale Combined Cooling, Heating, and Power (Micro-CCHP) SystemRichard, Scott J 20 December 2013 (has links)
This study explores the application of micro-CCHP systems that utilize a 30 kW gas microturbine and an absorption chiller. Engineering Equation Solver (EES) is used to model a novel single-effect and double-effect water-lithium bromide absorption chiller that integrates the heat recovery unit and cooling tower of a conventional CCHP system into the chiller’s design, reducing the cost and footprint of the system. The results of the EES model are used to perform heat and material balances for the micro-CCHP systems employing the novel integrated chillers, and energy budgets for these systems are developed. While the thermal performance of existing CCHP systems range from 50-70%, the resulting thermal performance of the new systems in this study can double those previously documented. The size of the new system can be significantly reduced to less than one third the size of the existing system.
|
103 |
Experimental Investigation of Mist Film Cooling and Feasibility Study of Mist Transport in Gas TurbinesRagab, Reda M 20 December 2013 (has links)
In the modern advanced gas turbines, the turbine inlet temperature may exceed 1500°C as a requirement to increase power output and thermal efficiency. Therefore, it is imperative that the blades and vanes are cooled so they can withstand these extreme temperatures. Film cooling is a cooling technique widely used in high-performance gas turbines. However, the film cooling effectiveness has almost reached plateau, resulting in a bottleneck for continuous improvement of gas turbines' efficiency.
In this study, an innovative cooling scheme, mist film cooling is investigated through experiments. A small amount of tiny water droplets with an average diameter about 10-15 µm (mist) is injected into the cooling air to enhance the cooling performance. A Phase Doppler Particle Analyzer (PDPA) system is used for droplet measurements. Mist film cooling performance is evaluated and compared against air-only film cooling. This study continues the previous work by (a) adding fan-shaped holes and comparing their cooling performance with the round holes, (b) extending the length of the test section to study the performance farther downstream the injection holds, and (c) using computational simulation to investigate the feasibility of transporting mist to the film cooling holes through gas turbine inside passages.
The results show that, with an appropriate blowing ratio, the fan-shaped holes performs about 200% better than round holes in cooling effectiveness and adding 10% (wt.) mist can further enhance cooling effectiveness 170% in average. Farther downstream away from the injection holes (X/D> 50), mist cooling enhancement prevails and actually increases significantly. PDPA measurements have shed lights to the fundamental physics of droplet dynamics and their interactions with thermo-flow fields. These experimental results lead to either using lower amount of cooling air or use fewer number of cooing holes rows. This means higher gas turbine power output, higher thermal efficiency, and longer components life which will reflect as a cheaper electricity bill.
Computational Fluid Dynamics (CFD) showed that it is feasible to transport the water mist, with initial diameters ranging from 30 µm-50 µm and mist ratio of 10-15%, to the cooling holes on the surface of the turbine vanes and rotors to provide the desired film cooling.
Key words: Gas Turbines, Heat Transfer, Film / mist Cooling, Experimental Study, Mist Transport, CFD, PDPA.
|
104 |
A Numerical Study of Compressible Lid Driven Cavity Flow with a Moving BoundaryHussain, Amer 13 May 2016 (has links)
A two-dimensional (2-D), mathematical model is adopted to investigate the development of circulation patterns for compressible, laminar, and shear driven flow inside a rectangular cavity. The bottom of the cavity is free to move at a specified speed and the aspect ratio of the cavity is changed from 1.0 to 1.5. The vertical sides and the bottom of the cavity are assumed insulated. The cavity is filled with a compressible fluid with Prandtl number, Pr =1. The governing equations are solved numerically using the commercial Computational Fluid Dynamics (CFD) package ANSYS FLUENT 2015 and compared with the results for the primitive variables of the problem obtained using in house CFD code based on Coupled Modified Strongly Implicit Procedure (CMSIP). The simulations are carried out for the unsteady, lid driven cavity flow problem with moving boundary (bottom) for different Reynolds number, Mach numbers, bottom velocities and high initial pressure and temperature.
|
105 |
An Evaluation of Induction Heating in Healthcare Food IndustryHampton, Barrett Alexander 01 April 2018 (has links)
This thesis addresses the problem healthcare facilities are having in maintaining proper food temperatures while transporting meals to patients after food has left the kitchen area. Induction heat has been a known method for generating heat for many years. The commercial food industry currently uses this technology, which is beginning to appear in the residential sector as well because of developments made by manufacturers. This study focuses on the top commercial brand models of induction heaters and the supporting materials currently used to create heat sources to maintain food temperatures in hospitals and long term care facilities.
The research in this thesis includes data recorded from 6,000 total induction cycles from the 3 leading induction heating models. The focus of the research was to gather data concerning the models’ reliability to consistently create the intended inducement of radio frequency waves as well as deliver consistent temperature reactions from the recorded induction cycles. There were 18,000 temperature data points recorded during different time intervals for each of the induction cycles for the entire study. The results indicate the current technology not only is reliable in creating inductions fields but also in delivering consistent temperatures in the supporting materials being heated.
Induction has been used historically as a fast heating process to treat large metal products and requires no direct contact to create or transfer heat to a surface (Rudnev et al., 2003). The speed and consistent application of heat transfer that has been derived by modern manufacturing induction practices makes it a logical use of existing technology to be applied in maintaining temperatures of food in the healthcare market. However, the focus for commercial equipment manufacturers has been to market products that can consistently maintain desired food temperatures, particularly in the healthcare industry. Traditionally, heating foods was accomplished by physically applying heat to areas where food is stored, in order to reach a certain temperature, and then working to deliver that food to the patient in a timely manner or before it cooled to temperatures that would be deemed too cold for consumption. If the food was too cold, before it was served to the patient, then it was typically micro waved in order to reheat the food. However, reheating food in the microwave is not only detrimental, but it also degrades food quality, texture, and visual presentation (Harvard Health, 2015). As a result, the effort demanded to deliver all foods to all patients, while the food is still at an ideal temperature, has resulted in an increased cost of labor. This is because healthcare facilities have had to hire additional workers to meet the demands placed on the nutrition department related to safe temperatures and speed of food delivery (Aladdin, 2013).
|
106 |
HIGH TEMPERATURE FLOW SOLVER FOR AEROTHERMODYNAMICS PROBLEMSZhang, Huaibao 01 January 2015 (has links)
A weakly ionized hypersonic flow solver for the simulation of reentry flow is firstly developed at the University of Kentucky. This code is the fluid dynamics module of known as Kentucky Aerothermodynamics and Thermal Response System (KATS). The solver uses a second-order finite volume approach to solve the laminar Navier– Stokes equations, species mass conservation and energy balance equations for flow in chemical and thermal non-equilibrium state, and a fully implicit first-order backward Euler method for the time integration. The hypersonic flow solver is then extended to account for very low Mach number flow using the preconditioning and switch of the convective flux scheme to AUSM family. Additionally, a multi-species preconditioner is developed.
The following part of this work involves the coupling of a free flow and a porous medium flow. A new set of equation system for both free flows and porous media flows is constructed, which includes a Darcy–Brinkmann equation for momentum, mass conservation, and energy balance equation. The volume-average technique is used to evaluate the physical properties in the governing equations. Instead of imposing interface boundary conditions, this work aims to couple the free/porous problem through flux balance, therefore, flow behaviors at the interface are satisfied implicitly.
|
107 |
Multidimensional Modeling of Pyrolysis Gas Transport Inside Orthotropic Charring AblatorsWeng, Haoyue 01 January 2014 (has links)
During hypersonic atmospheric entry, spacecraft are exposed to enormous aerodynamic heat. To prevent the payload from overheating, charring ablative materials are favored to be applied as the heat shield at the exposing surface of the vehicle. Accurate modeling not only prevents mission failures, but also helps reduce cost. Existing models were mostly limited to one-dimensional and discrepancies were shown against measured experiments and flight-data. To help improve the models and analyze the charring ablation problems, a multidimensional material response module is developed, based on a finite volume method framework. The developed computer program is verified through a series of test-cases, and through code-to-code comparisons with a validated code. Several novel models are proposed, including a three-dimensional pyrolysis gas transport model and an orthotropic material model. The effects of these models are numerically studied and demonstrated to be significant.
|
108 |
Modeling of spallation phenomenon in an arc-jet environmentDavuluri, Raghava Sai Chaitanya 01 January 2015 (has links)
Space vehicles, while entering the planetary atmosphere, experience high loads of heat. Ablative materials are commonly used for a thermal protection system, which undergo mass removal mechanisms to counter the heat rates. Spallation is one of the ablative processes, which is characterized by the ejection of solid particles from the material into the flow. Numerical codes that are used in designing the heat shields ignore this phenomenon. Hence, to evaluate the effectiveness of spallation phenomenon, a numerical model is developed to compute the dynamics and chemistry of the particles. The code is one-way coupled to a CFD code that models high enthalpy flow field around a lightweight ablative material. A parametric study is carried out to examine the variations in trajectories with respect to ejection parameters. Numerical results are presented for argon and air flow fields, and their effect on the particle behavior is studied. The spallation code is loosely coupled with the CFD code to evaluate the impact of a particle on the flow field, and a numerical study is conducted.
|
109 |
The Next Generation Router System Cooling DesignGlover, Garrett A 01 November 2009 (has links)
Advancements in the networking and routing industry have created higher power electronic systems which dissipate large amounts of heat while cooling technology for these electronic systems has remained relatively unchanged. This report illustrates the development and testing of a hybrid liquid-air cooling system prototype implemented on Cisco’s 7609s router. Water was the working fluid through cold plates removing heat from line card components. The water was cooled by a compact liquid-air heat exchanger and circulated by two pumps. The testing results show that junction temperatures were maintained well below the 105°C limit for ambient conditions around 30°C at sea level. The estimated junction temperatures for Cisco’s standard ambient conditions of 50°C at 6,000 feet and 40°C at 10,000 feet were 104°C and 96°C respectively. Adjustments to the test data for Cisco’s two standard ambient conditions with expected device characteristics suggested the hybrid liquid-air cooling design could meet the projected heat load.
|
110 |
Thermal Feasibility and Performance Characteristics of an Air-Cooled Axial Flow Cylindrical Power Inverter by Finite Element AnalysisTawfik, Jonathan Atef 01 May 2011 (has links)
The purpose of the present study is to determine the thermal feasibility of an air-cooled power inverter. The inverter circuitry layout is designed in tandem with the thermal management of the devices. The cylindrical configuration of the air-cooled inverter concept accommodates a collinear axial air blower and a cylindrical capacitor with inverter cards oriented radially between them. Cooling air flows from the axial fan around the inverter cards and through the center hole of the cylindrical capacitor. The present study is a continuation of the thermal feasibility study conducted in fiscal year 2009 for the Oak Ridge National Laboratory to design a power inverter with a radial inflow cylindrical configuration. Results in the present study are obtained by modeling the inverter concept in computer simulations using the finite element method. Air flow rate, ambient air temperature, voltage, and device switching frequency are studied parametrically. Inlet air temperature was 50°C for all the results reported. Transient and steady-state simulations are based on inverter current that represents the US06 supplemental federal test procedure from the US EPA. The source of heat to the system comes from the power dissipated in the form of heat from the switches and diodes and is modeled as a function of the voltage, switching frequency, current, and device temperature. Since the device temperature is a result as well as an input variable, the steady-state and transient solution are iterative on this parameter. The results demonstrate the thermal feasibility of using air to cool an axial-flow power inverter. This axial inflow configuration decreases the pressure drop through the system by 63% over the radial inflow configuration, and the ideal blower power input for an inlet air flow rate of 540 cfm is reduced from 936 W to 312 W for the whole inverter. When the model is subject to one or multiple current cycles, the maximum device temperature does not exceed 164°F (327°F) for an inlet flow rate of 270 cfm, ambient temperature of 120°C, voltage of 650 V, and switching frequency of 20 kHz. Although the maximum temperature in one cycle is most sensitive to ambient temperature, the ambient temperature affect decays after approximately half the duration of one cycle. Of the parametric variables considered in the transient simulations, the system is most sensitive to inlet air flow rate.
|
Page generated in 0.1043 seconds