• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Transient thermal management simulations of complete heavy-duty vehicles

Svantesson, Einar January 2019 (has links)
Transient vehicle thermal management simulations have the potential to be an important tool to ensure long component lifetimes in heavy-duty vehicles, as well as save development costs by reducing development time. Time-resolved computational fluid dynamics simulations of complete vehicles are however typically very computationally expensive, and approximation methods must be employed to keep computational costs and turn-around times at a reasonable level. In this thesis, two transient methods are used to simulate two important time-dependent scenarios for complete vehicles; hot shutdowns and long dynamic drive cycles. An approach using a time scaling between fluid solver and thermal solver is evaluated for a short drive cycle and heat soak. A quasi-transient method, utilizing limited steady-state computational fluid dynamics data repeatedly, is used for a long drive cycle. The simulation results are validated and compared with measurements from a climatic wind tunnel. The results indicate that the time-scaling approach is appropriate when boundary conditions are not changing rapidly. Heat-soak simulations show reasonable agreement between three cases with different thermal scale factors. The quasi-transient simulations suggest that complete vehicle simulations for durations of more than one hour are feasible. The quasi-transient results partly agree with measurements, although more component temperature measurements are required to fully validate the method.

Page generated in 0.064 seconds