Spelling suggestions: "subject:"heatconduction"" "subject:"osteoconduction""
41 |
Estimation of Unsteady Nonuniform Heating Rates from Surface Temperature MeasurementsWalker, Don Gregory Jr. 16 December 1997 (has links)
Shock wave interactions such as those that occur during atmospheric re-entry, can produce extreme thermal loads on aerospace structures. These interactions are reproduced experimentally in hypersonic wind tunnels to study how the flow structures relate to the deleterious heat fluxes. In these studies, localized fluid jets created by shock interactions impinge on a test cylinder, where the temperature due to the heat flux is measured. These measurements are used to estimate the heat flux on the surface as a result of the shock interactions. The nature of the incident flux usually involves dynamic transients and severe nonuniformities. Finding this boundary flux from discrete unsteady temperature measurements is characterized by instabilities in the solution. The purpose of this work is to evaluate existing methodologies for the determination of the unsteady heat flux and to introduce a new approach based on an inverse technique. The performance of these methods was measured first in terms of accuracy and their ability to handle inherently ``unstable'' or highly dynamic data such as step fluxes and high frequency oscillating fluxes. Then the method was expanded to estimate unsteady and nonuniform heat fluxes. The inverse methods proved to be the most accurate and stable of the methods examined, with the proposed method being preferable. / Ph. D.
|
42 |
Improved temperature sensors for the process industryBanim, Robert Seamus January 1998 (has links)
No description available.
|
43 |
Thermal conductivity of metallic glasses by pulsed photothermal radiometry =: [Mo chong guang re fu she fa ce ding jin shu bo li zhi re dao xing].January 1990 (has links)
by Tong Kwok Wang. / Parallel title in Chinese characters. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1990. / Bibliography: leaves 71-74. / Acknowledgement / Abstract / Chapter 1. --- Introduction / Chapter 1.1 --- General Introduction --- p.1 / Chapter 1.2 --- Properties --- p.5 / Chapter 1.3 --- Background of this research --- p.10 / Chapter 1.4 --- The Present Experiment --- p.11 / Chapter 2. --- Theory / Chapter 2.1 --- Conduction Mechanism --- p.15 / Chapter 2.2 --- Temperature Dependence of Thermal Conductivity --- p.16 / Chapter 2.3 --- Phonon Conductivity and phonon mean free path --- p.20 / Chapter 3. --- Experimental / Chapter 3.1 --- Thermal Diffusivity by Laser Photothermal Radiometry --- p.22 / Chapter 3.2 --- Resistivity Measurement --- p.30 / Chapter 3.3 --- Sample Preparation --- p.36 / Chapter 3.4 --- Data Analysis --- p.37 / Chapter 4. --- Results and Discussion / Chapter 4.1 --- Thermal Conductivity --- p.41 / Chapter 4.2 --- Electronic Thermal Conductivity --- p.47 / Chapter 4.3 --- Phonon Thermal Conductivity --- p.52 / Chapter 4.4 --- Phonon Mean Free Path --- p.58 / Chapter 5. --- Conclusion and Suggestions for Further Work --- p.68 / References --- p.71 / Appendixes --- p.75
|
44 |
Transient heat conduction in shock supports in cryogenic apparatus.Condylis, Demetrios Napoleon January 1976 (has links)
Thesis. 1976. M.S.--Massachusetts Institute of Technology. Dept. of Mechanical Engineering. / Microfiche copy available in Archives and Engineering. / Includes bibliographical references. / M.S.
|
45 |
The design and implementation of a cryogenic thermal conductivity measurement systemOffner, Erik J. 19 March 2003 (has links)
A steady state, axial flow thermal conductivity test apparatus was designed
and constructed to operate between room temperature and approximately 4 Kelvin,
and to be compatible with existing electronic instrumentation and a continuous
flow cryostat. The test design included a radiation shield that had its temperature
profile matched to that of the sample to minimize radiation heat transfer losses.
The cryostat was used to provide the controllable, low temperature test environment
in which the test apparatus would operate. A special wiring bundle was constructed
to ensure proper connection of the test device to the required electronic
instrumentation, which was controlled from a computer by custom written software.
Once assembled, the thermal conductivity of a high purity copper sample
was measured over the temperature range from 45 to 300 Kelvin and compared to
literature recommended values. The test was performed a second time to check repeatability
of the measurements over a range of temperature. Next, the thermal
conductivity of a high purity niobium sample was measured and compared to literature
recommended values. This test was also performed twice. When completed,
these tests had demonstrated the accuracy and repeatability of the measurement of
thermal conductivity by the test apparatus over the range of temperatures specified
and over a range of conductivities. Finally, the thermal conductivity of a sample of
the bulk metallic glass Vitreloy 1 was measured over the same temperature range.
As far as was known, this was the first time the thermal conductivity of this particular
material had been tested below 400 Kelvin. / Graduation date: 2003
|
46 |
Three-Dimensional Heat Transfer Simulation Analysis of Slab in Batch Type Reheating FurnaceChuang, Tsung-Jen 28 July 2006 (has links)
Steel is the mother of industry, and is also an energy consumption intensive industry. Since the energy crisis, the various countries iron and steel plants positively take each energy frugal measure in order to reduce the fuel and the electric power consumption. In the iron and steel plant comparatively consumes the energy the system regulation equipment is the reheating furnace, so to save energy in a reheating furnace and reduce the energy consumption become one of important topics. The reduction consumes energy the countermeasure aspect may by analyze the heat transfer model and the change reheating furnace characteristic begins.
In this thesis, we will build a simulation system of reheating furnace to analysis the temperature change of slab in a reheating furnace and discussion energy consumption factor. And then we use the thermal balance model to analysis the situation of fuel consumption. According to different conditions, we want to discuss the relationships energy consumption and increasing temperature of slab inside furnace.
|
47 |
Non-fourier heat equations in solids analyzed from phonon statisticsBright, Trevor James. January 2009 (has links)
Thesis (M. S.)--Mechanical Engineering, Georgia Institute of Technology, 2010. / Committee Chair: Zhang, Zhuomin; Committee Member: Kumar, Satish; Committee Member: Peterson, G. P. Part of the SMARTech Electronic Thesis and Dissertation Collection.
|
48 |
Laboratory measurements of the thermal conductivity and thermal diffusivity of methane hydrate at simulated in situ conditionsdeMartin, Brian J. 05 1900 (has links)
No description available.
|
49 |
The thermal conductivity of aqueous electrolyte solutions and polar liquidsBleazard, Joseph Gibson 12 1900 (has links)
No description available.
|
50 |
Thermal conductivity of metals and alloys at low temperatures : Part I. A survey of existing data ; Part II. The thermal conductivity of a yellow brass and of cadmiumWright, William Howell 08 1900 (has links)
No description available.
|
Page generated in 0.0558 seconds