Spelling suggestions: "subject:"heattransfer"" "subject:"datatransfer""
291 |
Aerodynamic and thermal modeling of effusion cooling systems in Large Eddy SimulationBizzari, Romain 05 November 2018 (has links) (PDF)
Numerical simulation is progressively taking importance in the design of an aero- nautical engine. However, concerning the particular case of cooling devices, the high number of sub-millimetric cooling holes is an obstacle for computational sim- ulations. A classical approach goes through the modelling of the effusion cooling by homogenisation. It allows to simulate a full combustor but failsin representing the jet penetration and mixing. A new approach named thickened-hole model was developed during this thesis to overcome this issue. A work on improving the mesh resolution onkey areas thanks to an automatic adaptive method is also presented, leading to a clear breakthrough. In parallel, as the flame tube temperature is a cornerstone for the combustor durability,a low-cost approach is proposed to predict it. To meet the time-constraints of design, it is based on thermal modelling instead of a direct thermal resolution.
|
292 |
Modelagem térmica da coluna de destilação de um ciclo de refrigeração por absorção de amônia/água. / Thermal modeling of distillation column of a ammonia/water refrigeration cycle.Zavaleta Aguilar, Elí Wilfredo 22 February 2010 (has links)
O objetivo deste trabalho é apresentar a análise de uma coluna de destilação de pratos perfurados com vertedor segmentado em condições de regime permanente para um ciclo de refrigeração por absorção com capacidade de 5 toneladas de refrigeração que trabalha com amônia/água. Para garantir que o ciclo de refrigeração trabalhe em condições de projeto, a coluna de destilação deve proporcionar vapor com elevado grau de pureza de amônia. Os balanços de massa e de energia da coluna foram realizados com o método de Ponchon-Savarit o qual considera escoamentos do líquido e do vapor na saída de cada prato em equilíbrio termodinâmico. Para estas condições foi calculado como 4 o número de pratos ideais e a alimentação à coluna seria acima do segundo prato. A análise de sensibilidade do fator de refluxo indica que é um parâmetro importante na análise econômica do projeto, já que dele depende o alto custo inicial de construção da coluna, ou as maiores despesas de gasto em combustível no funcionamento do ciclo. As considerações hidráulicas, as quedas pressão e as razões de fluxos mássicos deram como resultado a geometria interna da coluna, a qual resultou satisfatória para os parâmetros de projeto recomendados, embora tenham sido usadas correlações da área de petróleo, petroquímica e de destilação de bebidas alcoólicas. A distância entre pratos é uma medida da compactabilidade da coluna e ficou muito dependente, assim como outras medidas do prato, da altura do vertedor a qual foi encontrada como ótima para valores entre 4 mm e 8 mm. A geometria do prato resulta ser sensível à carga de vapor e, em menor grau, à carga do líquido, mostrando-se insensível ao diâmetro do furo. A eficiência da coluna leva em conta fenômenos de transporte no prato que o afasta da condição de idealidade. Calculou-se uma eficiência da coluna de 50 %. Este valor baixo se deve principalmente ao baixo valor da inclinação da curva de equilíbrio amônia/água no início da seção de esgotamento e à baixa razão da vazão molar do vapor dividido pela vazão molar do líquido, nessa seção. / The objective of this work is to present the analysis of a segmented weir sieve tray distillation column in steady-state conditions for a 5 Tons of Refrigeration ammonia/water absorption refrigeration cycle. For a proper and correct cycle operation, the distillation column should provide ammonia at high degree of purity. Column, mass and energy balances were made using the Ponchon-Savarit method, which considers that the liquid and the vapor leaves the tray at thermodynamic equilibrium. For these conditions it was calculated as being 4 the ideal number of trays and the feeding to the column would be above the second tray. A sensibility analysis of the reflux factor indicates that it is an important project from an economical study, as from that parameter depends the initial cost of the column manufacture, or the expenses whit fuel for the cycle operation. Hydraulic considerations, pressure loss and of mass flow ratios provides the internal geometry of the column, which resulted satisfactory for the project parameters recommended, although, correlations used are more applied in petroleum, petrochemical and alcoholic industries. Tray spacing, which is a measure of the compactness of the column, and other geometric tray values, depend on the weir height. It was found optimal values between 4 mm and 8 mm. The tray geometry is also sensitive, to the vapor load and to the liquid load, at smaller degree, and it is insensible with the hole diameter. The column efficiency depends on the transport phenomena on the tray. This value fixes the tray number at the actual condition. It was calculated an efficiency of the column of 50 %. This low value depends mainly on the low value of the slope of the ammonia/water equilibrium curve below the stripping section and the low value of the molar flow vapor-liquid ratio at this section.
|
293 |
Pre-swirl rotor-stator systems : flow and heat transferLewis, Paul January 2008 (has links)
No description available.
|
294 |
Determination of the convective heat transfer coefficients from the surfaces of buildings within urban street canyonsSmith, James O. January 2010 (has links)
In the summer of 2007, the number of people living in the world’s urban areas exceeded that of those living in the countryside. Such urbanisation tends to modify the climates of towns and cities as a result of a number of factors which together form the ‘urban heat island’ effect. In order to better design buildings and urban areas to cope with these effects, it is first necessary to understand the heat transfer mechanisms which are taking place. The aim of the current research has therefore been to provide convective heat transfer data appropriate for low-rise urban environments by investigating the effects of wind speed, direction and street geometry. The research has employed the naphthalene sublimation technique which has been extended in several fundamental areas including development of a novel approach to measure the rate of sublimation from wind tunnel models. This technique has permitted measurements to be made over an array of discrete locations, revealing the variation across building surfaces. The uncertainty in the convective heat transfer coefficients obtained was calculated to be approximately ±6%. Tests were conducted in the BRE wind tunnel with an atmospheric boundary layer simulation appropriate to inner city areas. Cube models were arranged so as to form long rows of flat-roofed buildings referred to as ‘street canyons’. A series of correlations have been derived from the experimental results from which the rate of convection occurring from each building surface may be obtained with respect to wind speed. The greatest rates of convective heat transfer have been shown to occur at the top of the windward wall and leading edge of the roof, the lowest rates from the leeward wall of a building. Convection was found to be reduced in narrow street canyons. In wider street canyons, the convective coefficients on the exposed windward and roof surfaces of buildings were higher, but the values on the leeward wall are lessened due to the distancing of the downstream windward vortex. The effect of wind direction was found to be relatively small and therefore it is proposed that the convective heat transfer relationships presented may be applied irrespective of wind direction.
|
295 |
Theoretical models of buoyancy-induced flow in rotating cavitiesTang, Hui January 2017 (has links)
Calculation of the blade tip clearances of the high-pressure-compressor rotors in aeroengines involves calculating the radial growth of the corotating compressor discs. This requires the calculation of the thermal growth of the discs, which in turn requires a knowledge of the disc temperatures and Nusselt numbers for the buoyancy-induced flow in the cavity between the discs. This is a strongly conjugate problem in which the equations for the fluid flow and the disc temperature are coupled. In this thesis, the buoyancy-induced flow and heat transfer inside the compressor rotors is modelled assuming laminar Ekman-layer flow on the discs and compressible flow in the fluid core between the Ekman layers; conduction in the discs is modelled using a one-dimensional fin equation. The theoretical predictions are compared with Nusselt numbers and temperatures obtained from two independent sets of temperature measurements, obtained on a multi-cavity compressor rig, and the ‘experimental’ Nusselt numbers were calculated using a Bayesian model for the inverse solution of the fin equation. For most of the experimental cases, with Grashof numbers up to 1012, mainly good agreement was achieved between the theoretical predictions and experimental values of the disc temperatures and Nusselt numbers. As predicted by the model, increasing the rotational Reynolds number can, under certain conditions, cause a decrease in the Nusselt numbers. Importantly, the results suggest that laminar Ekman-layer flow could occur even at the high Grashof numbers found in the compressor rotors of aeroengines. An extension of the buoyancy model included empirical correlations for the Nusselt numbers for the compressor shroud and disc cobs. This extended model was used to predict the temperature rise of the axial throughflow of cooling air in the compressor rotor, and reasonable agreement was achieved between the predicted and measured throughflow temperatures. This is the first time a theoretical model (rather than CFD) has been used to predict the temperatures of a compressor disc and the axial throughflow, and the model takes only seconds to predict the temperatures that would take days or even weeks to predict using CFD. Some suggestions are made for future research to improve the extent and accuracy of the model.
|
296 |
Influences of catalyst particle geometry on fixed bed reactor near-wall heat transfer using CFDNijemeisland, Michiel 30 January 2003 (has links)
Fixed bed reactors are an essential part of the chemical industry as they are used in a wide variety of chemical processes. To better model these systems a more fundamental understanding of the processes taking place in a fixed bed is required. Fixed bed models are traditionally based on high tube-to particle diameter ratio (N) beds, where temperature and flow profile gradients are mild and can be averaged. Low-N beds are used in extremely exo- and endothermic processes on the tube side of tube and shell type reactors. In these beds, heat transfer is one of the most important aspects. The importance of accurate modeling of heat transfer and its dependence on accurate modeling of the flow features leads to the need for studying the phenomena in these low-N beds in detail. In this work a comparative study is made of the influence of spherical and cylindrical packing particle shapes, positions and orientations on the rates of heat transfer in the near-wall region in a steam reforming application. Computational Fluid Dynamics (CFD) is used as a tool for obtaining the detailed flow and temperature information in a low-N fixed bed. CFD simulation geometries of discrete particle packed beds are designed and methods for data extraction and analysis are developed. After conceptual and quantitative analysis of the simulation data it is found that few clear relations between the complex phenomena of flow and heat transfer can be easily identified. Investigated features are the orientations of the particle in the flow, and many design parameters, such as the number and size of longitudinal holes in the particle and external features on the particle. We find that many of the investigated features are related and their individual influences could not be isolated in this study. Some of the related features are, for example, the number of holes in the particle design and the particle orientation in the flow. Some general conclusions could be drawn. External features on the particles enhance the overall heat transfer properties by better mixing of the flow field. When holes are present in the cylindrical particle design, heat transfer effectiveness can be improved with fewer larger holes. After identifying the packing-related features influencing the near-wall heat transfer under steam reforming conditions, an attempt was made to incorporate the steam reforming reaction in the simulation. In the initial attempts the reaction was modeled as an energy flux at the catalyst particle surfaces. This approach was based on the abilities of the CFD code, but turned out not accurate enough. Elimination of the effects of local reactant depletion and the lack of solid energy conduction in the catalyst particles resulted in an unphysical temperature field. Several suggestions, based on the results of this study, are made for additional aspects of particle design to be investigated. Additionally, suggestions are made on how to incorporate the modeling of a reaction in fixed bed heat transfer simulations.
|
297 |
A Porous Media Model for Sprinkler WettingSipe, Joel E 08 April 2010 (has links)
A one-dimensional porous media model has been developed to investigate water based fire suppression. The model is for heat and mass transfer in porous materials subjected to external water sprays and radiant heating. In the model, heat transfer inside the material occurs by conduction, convection, and phase change. Mass transfer occurs by gas phase diffusion and convection in the liquid and gas phases. Convective mass fluxes are driven by pressure gradients according to Darcy’s Law. Boundary conditions that are appropriate for a range of cases are presented. The model was used, along with experiments, to investigate two scenarios relevant to water based suppression: spray wetting and radiant heating. Ceramic fiberboard samples were used as a test material. For the wetting tests, the model is shown to be able to reasonably predict the rate of water absorption into the samples. Radiant heating tests were conducted in the cone calorimeter with pre-wetted samples. For the heating tests, the model is shown to reasonably predict the drying behavior that would directly precede an ignition event.
|
298 |
CFD simulation and experiment of catalyst deactivation and heat transfer in a low N fixed-bed reactorBehnam, Mohsen 11 January 2012 (has links)
Modeling of fluid flow, heat transfer and reaction in fixed beds is an essential part of their design. This is especially critical for highly endothermic reactions in low tube-to-particle diameter ratio (N) tubes, such as methane steam reforming (MSR) and alkane dehydrogenation as two important commercial reactions. The modeling of fixed bed reaction is available in literatures with lots of assumptions. However, there is a need for implementing the reaction conditions with diffusion aspects on a real fixed bed reactor without assuming any pseudo conditions. Computational fluid dynamics (CFD) has been found as a suitable tool by many researchers to simulate fixed beds. CFD can simulate complex geometry of randomly-packed tubes, and provides us with more fundamental understanding of the transport and reaction phenomena in reactor tubes. CFD can be used to obtain detailed three-dimensional velocity, species and temperature fields that are needed to improve engineering approaches. Previously, the geometry of 120-degree wall segment (WS) of the whole reactor tube has been studied in our group. Previous works have introduced the coupling of gas flow and resolved species and temperature gradients inside pellets by CFD for methane steam reforming (MSR) and propane dehydrogenation (PDH) without considering deactivation. The deactivation of catalysts due to carbon formation is an important problem in industry, such as steam reforming and the catalytic dehydrogenation of alkanes, which are both strongly endothermic reactions. Many researches were carried out to study the effect of carbon formation and catalyst deactivation on the reactor performance. The local carbon deposition on catalysts can cause particle breakage and strongly decrease reaction rates. Catalyst deactivation in heated tubes removes the heat sink and can result in local hot spots that weaken the reactor tube. This is particularly a problem for a low tube-to-particle diameter ratio fixed bed reactor. A 3D resolved CFD model simulation was used to study the local details of carbon deposition in which the reactions and deactivation take place inside the catalytic solid particles. CFD simulations of flow, heat transfer, diffusion and reaction were carried out using the commercial CFD code FLUENT/ANSYS 6.3 in a 3D 120-degree periodic wall segment with N=4. The mesh used boundary layer prism cells at both the inside and outside particle surfaces and at the tube wall. These reactions were represented in the solid particles using user-defined scalars to mimic species transport and reaction, with user-defined functions supplying reaction rates. Diffusion in the particles was modeled by Fick's law using an effective diffusivity, given by Hite and Jackson's approximation of the Dusty Gas Model. The transient developments of particle internal gradients and carbon accumulation have been studied for the early stages of deactivation. Carbon concentration is initially strongest close to the surface and in the high temperature regions of the catalysts and affected by the wall heat flux. Deactivation of the endothermic reactions causes a slow increase in the average catalyst temperature. The second stage of the research was the verification of our CFD reaction model with experimental data under reacting conditions. The highly endothermic commercial methane steam reforming (MSR) reaction was studied experimentally in a fixed bed reactor. The temperature contributions inside catalyst particles were measured. The MSR reaction showed strong effects on the temperature profile along the reactor. Then, a CFD model was used to predict temperature profiles under MSR reaction conditions. Comparison of CFD and experimental data showed very good qualitative as well as quantitative agreement for temperature inside catalyst particles at different inlet gas temperatures. The last stage was to develop a fundamental energy equation without introducing new adjustable parameters to study heat transfer in fixed beds. In the past, many researchers have been carried out to simulate the heat transfer in fixed bed reactors by using kr (effective thermal conductivity) and hw (heat transfer coefficient). But the classical model with kr and hw cannot give a correct T(r) near tube wall, where deactivation is strongest. Therefore we need a better model which can represent the near wall heat transfer more accurate. CFD modeling was used to develop pseudo-continuum model for T(r) using Vr(r,z) and Vz(r). To get better temperature at the wall vicinity close to the physical reality. In this model radial thermal conductivity was obtained from Zehner-Schlünder model. The convection heat transfer was calculated in the 2D flow fluid from the CFD run. Results were obtained for Reynolds numbers in the range 240€“1900. The accuracy of the new model has been validated by analytical solution. The temperature calculated by the new velocity field pseudohomogenous energy equation showed reasonable quantitative agreement with values predicted by the CFD model.
|
299 |
Soluções analíticas para a transferência de calor em filmes líquidos: aplicação a escoamentos sobre aerofólios. / Analytical solutions for the film heat transfer: application to airfoil flow.Saa, Olívia Terence 29 July 2013 (has links)
Este trabalho tem como objetivo a obtenção de soluções analíticas e semi-analíticas para o problema de transferência de calor em filmes de água líquida escoando sobre aerofólios. O problema da transferência de calor em filmes já foi abordado na literatura, no entanto, não foram encontradas, na bibliografia aberta, soluções analíticas aplicáveis ao problema da formação de gelo em filmes escoando sobre aerofólios de aeronaves. Este fato se deve à presença de um termo de transferência de calor por convecção na interface filme-escoamento de ar, que não foi considerado nas soluções analíticas encontradas na literatura. Para os problemas estudados, a obtenção da distribuição de temperaturas no filme é fundamental, pois, com ela, é possível prever a iminência da formação de gelo, ou seja, quando a temperatura de solidificação é atingida no filme. Nos caos de superfícies com proteção térmica, deve ser especificado um fluxo de calor na superfície de contato entre o filme e o aerofólio, enquanto nos casos nos quais a superfície do aerofólio está desprotegida, deve ser considerada uma temperatura fixa. Neste trabalho, para cada um destes casos, foram considerados gradientes de pressão nulos e constantes no filme dágua. Assim, ao total, quatro casos foram gerados e analisados. O método da separação de variáveis e expansões em séries de autofunções foi utilizado na obtenção das soluções analíticas e o de Galerkin na obtenção das soluções semi-analíticas. Este último método, apesar de não ser exato, não apresenta alguns dos desvios intrínsecos aos métodos numéricos usuais, pois não depende da discretização do espaço em forma de malha e das interpolações decorrentes. Foi feita uma comparação entre as soluções para gradiente de pressão nulo obtidas pelo método de Galerkin e as soluções obtidas por separação de variáveis. Desta maneira, encontraram-se os desvios da soluções semi-analíticas em relação às soluções exatas. Finalmente, foram encontradas estimativas simplificadas para a distribuição de temperaturas no filme, além de variáveis adimensionais que generalizam o problema, podendo ser traçadas, então, uma série de curvas válidas para uma extensa gama de parâmetros. / This work aims to obtain analytical and semi-analytical solutions to the airfoil film heat transfer problem. The film heat transfer problem has been already solved in the literature. Nevertheless, no consistent solution with the airfoil ice accretion problem is known. This issue is due to the presence of a convective term in the interface between the film and the airflow, which has not been taken into account in the analytical studies available in the literature. Solving the temperature distribution in the film is essential for predicting the ice growth onset, i.e., the location where the solidification temperature is reached in the film. In the cases corresponding to thermally protected surfaces, the heat flow at the airfoil surface has to be specified, while, on the other hand, for the non-protected surfaces, the surface temperature has to be specified. In this work, for each of these cases, it has been considered both zero pressure gradient and a non-zero constant pressure gradient at the water and air flow. In this way, four cases were generated and analyzed. Separation of variables and eigenfunction expansion methods were used in the analytical solutions, whereas the Galerkin method was used to obtain the semi-analytical solutions. The latter, despite being approximate, does not produce some of the numerical errors associated with the space discretization and interpolation. The zero pressure solutions were compared in order to find the deviation between the analytical and semi-analytical solutions. Finally, estimates for the film temperature distribution were found, besides dimensionless variables that generalize the problem, enabling the creation of a family of curves valid for a wide range of parameters.
|
300 |
Numerical and experimental investigation of a multi-pass heat-pipe-based heat exchangerMroue, Hassan January 2018 (has links)
Theoretical, numerical and experimental investigations have been successfully carried out to characterise the thermal performance of an air-to-water multi-pass heat exchanger equipped with thermosyphon technology. Air and water are the heat source and the heat sink on the evaporator and condenser, respectively. Evaporator and condenser are connected by six thermosyphons, through which thermal energy is transferred. The investigation was performed for two multi-pass configurations at various inlet conditions: a range of air inlet temperatures (100, 150, 200 and 250°C) and mass flow rates (0.05, 0.08, 0.11 and 0.14 kg/s). The water inlet conditions were kept constant (a temperature of 15°C and a mass flow rate of 0.08 kg/s). The theoretical model was built by applying the thermal resistance analogy with the aid of convection, boiling and condensation correlations found in the literature. It was found that the thermal resistances in the first pass act in parallel mode along the ones in the second pass. Similarly, in the case of three passes. Also, the external convective thermal resistance were found to be the major contributor to the overall thermal resistance in the entire heat exchanger. ANSYS Fluent was the numerical tool used to investigate the shell-side convective heat transfer for two multi-pass configurations. The CFD model has been experimentally validated. The two-phase change processes inside the thermosyphons were not modelled during the simulation. Instead, the thermosyphons were treated as solid rods with a constant thermal conductivity, which was calculated. The overall rate of heat transfer was obtained by both CFD and a theoretical model, and the results lay within 15% of the experimental data. The numerical predictions demonstrated that the K-ε Realizable turbulence model with scalable wall function is a reliable tool for predicting heat transfer and fluid flow in such types of heat exchangers. This investigation will add a great knowledge to the academia in terms of both experimentation and modelling in the area of multi-pass thermosyphons-based heat exchangers. Also, it provides the industries with a cost effect design tool for future modelling of similar heat exchanger systems.
|
Page generated in 0.0828 seconds