• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4449
  • 1409
  • 908
  • 833
  • 546
  • 241
  • 128
  • 128
  • 128
  • 128
  • 128
  • 128
  • 119
  • 58
  • 58
  • Tagged with
  • 11363
  • 2480
  • 1805
  • 1376
  • 1250
  • 870
  • 854
  • 801
  • 798
  • 788
  • 762
  • 681
  • 676
  • 621
  • 616
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
511

Metal dusting on heat-resistant alloys under thermal cyclic conditions

Toh, Chin Hock, Materials Science & Engineering, Faculty of Science, UNSW January 2002 (has links)
Solid oxide fuel cells operate at elevated temperature, oxidising fuel gases to generate electricity. The fuel gas streams in the fuel cell systems are rich in carbon and have very low oxygen potential. Under these conditions, alloys can undergo metal dusting, which causes pitting or general thinning of the alloys. This process is not yet fully understood. It is, hence, not possible to accurately predict the susceptibility of a particular alloy in the atmospheres relevant to SOFC. Model Fe-Cr and Fe-Ni-Cr alloys were exposed to test the hypothesis that cementite formation and its decomposition is necessary for metal dusting to occur. A series of ferritic and austenitic engineering alloys were also exposed to compare their dusting rates. Two specimens of each alloy were studied, one was etched in a H3PO4-15%H2SO4-21%H2O solution and the other was ground to a 600-grit finish. The alloys were exposed to a CO-26%H2-6%H2O gas mixture at 680oC under thermal cyclic conditions. The hot gas composition corresponded to ac = 2.9 and an oxygen potential high enough to oxidise chromium, but not iron or nickel. All the alloys were shown to undergo internal carburisation, metal dusting and coking once the protective chromium oxide scale was damaged. Fe-25Cr was less resistant than Fe-60Cr because of its lower chromium content. However, ferritic Fe-25Cr-based steels are more resistant to dusting than austenitic Fe-25Cr-25Ni. The present findings are consistent with the earlier conclusions that cementite formation is essential for dusting on ferritic steels and that dusting of austenitic alloys does not involve the prior formation of cementite and its decomposition. The onset of metal dusting was more accelerated for most austenitic engineering alloys (Alloy 800, Inconel 601, 690, 693 and Alloy 602CA) than for engineering ferritic steels (Fe-27Cr-0.001Y). However, the alloy with the best performance was austenitic Inconel 625, which was still protected by its Cr2O3 scale after 500 one-hour cycles. In both ferritic and austenitic chromia-formers alloys, the surface ground specimens were more resistant to metal dusting than the electropolished specimens. In contrast, ferritic alumina-formers with electropolished surfaces did not dust during the entire experimental periods of 1200 one-hour cycle, but the alloys with ground surfaces slowly underwent dusting attack. The coke deposits formed consisted largely of graphite nanotubes, containing small particles at the tube tips. These particles were identified as single crystal cementite, in the case of ferritic steels, and austenite, for the austenitic alloys. This is not in agreement with the currently accepted dusting model for ferritic steels that cementite decomposition yields iron particles, which catalyse coke deposition. EDX analysis of the cementite particles, showed that the only metal detected was iron, thus differing in chemistry from the (Fe,Cr)3C surface layer. Similarly, the austenite particles contained only nickel and iron, differing in chemistry from the disintegrated alloy surfaces. These results suggested that the particles were formed in the coke in the carbon-supersaturated gas, rather than disintegration of the alloy surface layer. Strong orientation relationships were determined between the graphite and cementite particles; however, no clear crystallographic relationship was deduced between the graphite and austenite. Relative alloy performance appears consistent using the present multiple one-hour cycle and the results of others using a smaller number of lengthy cycles. Hourly thermal cycling was shown to accelerate the dusting onset for both electropolished chromia-formers and surface ground alumina-formers. Protective oxide scales spall at a critical thickness and carbon attack results when the alloy surfaces are depleted of scale-forming elements and healing becomes impossible. On this basis, analytical models were developed and used to predict the incubation periods for oxide failure and the subsequent carbon attack. Upon testing, these models were, however, found to be not qualitatively meaningful in predicting the onset of dusting observed in the present study. Gross oversimplifications involved in the model and the absence of reliable data for many parameters required for the computations prevented even an approximate quantitative prediction.
512

Thermodynamics in curved space

Stait-Gardner, Timothy John, University of Western Sydney, College of Health and Science, School of Biomedical and Health Sciences January 2005 (has links)
This thesis examines the underlying physics that gives rise to the Hawking and Unruh effects. The Rindler coordinate system is constructed from a physical argument that shows how an observer would actually go about building such a coordinate system out of scaffolding and clocks. Quantum theory is discussed in detail with particular relevance to quantum entanglement as this is an important issue relating to information loss in black holes. The thesis demonstrates the general impossibility of utilising quantum entanglement to transmit information faster than light. Bell's theorem is also reviewed from the perspective of anti-correlated spin-half particles. This theorem shows the impossibility of describing nature by a local hidden variable theory, and hence emphasises the importance of the topic of information loss in black holes as a bridge between general relativity and quantum theory. The Unruh effect is a purely quantum field theoretic effect that displays considerable mathematical similarities to the Hawking effect. The effects are nevertheless quite dissimilar in some respects and this thesis examines some of these differences. The other aim of the thesis is to discuss the possible loss of information in a black hole. The Hawking effect raises the possibility that a black hole may evaporate and potentially disappear completely. This raises a significant problem related to how the information that entered the black hole may escape, if at all. If information cannot escape the black hole then this implies a violation of one of the principles of quantum mechanics: a pure quantum state cannot undergo unitary evolution to become a thermal distribution of radiation but this is what the Hawking effect essentially predicts. These two conclusions are new and are important contributions to the understanding of the coupling between gravity and quantum theory. The thesis also looks at a number of subsidiary topics to do with the underlying physics of these effects along the way, always with an emphasis on the physical. In particular, the method for quantizing a field is developed in a physical manner by examining the continuum limit of a quantized discretely modelled string. Two other topics within the thesis that are of interest are a demonstration of the coordinate independence of the Euler-Lagrange equations and a heuristic method of 'deriving' the Lorentz transformation equations that is presented in an appendix. These two presentations are new and have not appeared elsewhere to my knowledge. / Doctor of Philosophy (PhD) (Science)
513

Numerical investigations of the performance and effectiveness of thermoacoustic couples.

Zoontjens, Luke January 2008 (has links)
Thermoacoustics is a field of study which includes devices purpose-built to exploit the phenomenal interaction between heat and sound. Thermoacoustics has been demonstrated as an effective technology which can potentially serve a variety of purposes such as cryogenics, cost-effective domestic refrigeration or electricity generation, without adverse environmental impact or commercial drawbacks such as expensive construction or maintenance costs or high part counts. The mechanisms by which thermoacoustic devices operate at low amplitudes have been identified and effective design tools and methods are available, but the precise heat and mass transfer which occurs deep inside the core of thermoacoustic devices at high amplitudes cannot at present be precisely determined experimentally, and to date have been estimated using only relatively simple or one-dimensional computational domains. It is expected that thermoacoustic devices will need to operate at relatively high pressure amplitudes for commercial and practical applications, to achieve power densities similar to competing technologies. Clearly, advancement of these models and the methods used to investigate them will enable a better understanding of the precise heat and mass transfer that occurs within such devices. Previous numerical studies have modelled a ‘thermoacoustic couple’ which consists of a single or several plates (often modelled with zero thickness) and channels within an oscillatory pressure field. In this thesis several improvements to the ‘thermoacoustic couple’ modelspace are introduced and modelled, and compared with published results. Using the commercial CFD software Fluent, a two-dimensional, segregated and second-order implicit numerical model was developed which solves equations for continuity of mass, momentum and energy. These equations were computed using second-order and double-precision discretisation of time, flow variables and energy. A computational domain is presented which is capable of modelling plates of zero or non-zero thickness, is ‘self-resonant’ and able to capture the entrance and exit effects at the stack plate edges. Studies are presented in which the acoustic pressure amplitude, the thickness of the plate (‘blockage ratio’) and the shape of the plate are varied to determine their influence upon the rate of effective heat transfer, flow structure and overall efficiency. The modelling of thermoacoustic couples with finite thickness presented in this thesis demonstrates that the finite thickness produces new results which show significant disturbances to the flow field and changes to the expected rate and distribution of heat flux along the stack plate. Results indicate that the thickness of the plate, t[subscript]s, strongly controls the generation of vortices outside the stack region and perturbs the flow structure and heat flux distribution at the extremities of the plate. Increases in t[subscript]s are also shown to improve the integral of the total heat transfer rate but at the expense of increased entropy generation. Another contribution of this thesis is the study of the effect that leading and trailing edge shapes of stack plates have on the performance of a thermoacoustic couple. In practice, typical parallel or rectangular section stack plates do not have perfectly square edges. The existing literature considers only rectangular or zero-thickness (1-D) plates. Hence a study was performed to evaluate the potential for gains in performance from the use of non-rectangular cross sections, such as rounded, aerofoil or bulbous shaped edges. Consideration of various types of stack plate edges show that performance improvements can be made from certain treatments to the stack plate tips or if possible, stack plate profiles. This thesis also considers the influence of thermophysical properties and phenomena associated with practical thermoacoustic devices to investigate the applicability of the numerical model to experimental outcomes. Comparisons made between results obtained using the numerical model, linear numerical formulations and experimental results suggest that the numerical model allows comparative study of various thermoacoustic systems for design purposes but is not yet of sufficient scope to fully characterise a realistic system and predict absolute levels of performance. However, the presented method of modelling thermoacoustic couples yields increased insight and detail of flow regimes and heat transportation over previous studies. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1316904 / Thesis (Ph.D.) -- University of Adelaide, School of Mechanical Engineering, 2008
514

Forced convection in curved ducts multiplicity and stability /

Liu, Fang, January 2006 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2006. / Title proper from title frame. Also available in printed format.
515

The effects of turbulence structures on the air-side performance of compact tube-fin heat exchangers.

Allison, Colin Bidden January 2006 (has links)
Energy is an essential and critical commodity and our reliance on it has fuelled much of the debate and interest in society and academia alike. Environmental concerns, depleted energy resources and higher energy prices are the main factors that drive this interest. Energy efficiency is one of the main avenues to preserve and better utilize this valuable commodity. The energy exchange by employment of heat exchangers is extensive and tube-fin heat exchangers are widely used in industrial and commercial applications. Smarter designs could not only improve energy efficiency but may also save on material costs. Although mass production and improved manufacturing techniques have reduced manufacturing costs, tube fin heat exchangers have not evolved greatly to take advantage of these improvements. There has been a large range of fin surface enhancements proposed, such as waffled fins or louvres and while limited improvements in capacity have been achieved, this is generally accomplished at a much larger pressure drop penalty. Numerous studies have been performed in order to examine the potential of various surface enhancement geometries on an ad hoc basis. These presumably operate on the basis of enhanced convection due to increased turbulence levels. However very few of these studies examine the actual nature of turbulence that is responsible for convection enhancement. A series of experiments and numerical studies have been conducted to quantify the effect of the turbulence vortex characteristics on the air side heat convection of a tube-fin heat exchanger. Homogeneous, transverse and streamwise vortical structures were investigated. The thermal transfer performance resulting from these flows was compared to that of standard louver fin geometries by considering sensible heat transfer only, applicable to radiator applications. Several novel coils designed to achieve these vortex structures, were developed and their heat transfer characteristics were quantified. These coil designs can be described as the Tube Mesh, Tube Strut and a Delta-Winglet fin surface.The Tube Mesh heat exchanger consisted entirely of horizontal and vertical tubes arranged in an approximate homogeneous turbulence generating grid. While they had a lower heat transfer of between 53% to 63% of that of the louvre fin surface, they had an extremely low pressure drop of 25% to 33%. This has the potential to make them suitable for certain low pressure drop applications, especially if energy saving is a prerequisite. The range of Tube Strut coils consisted of a tube bundle with interconnecting heat conducting struts to form a parallel plate array were also investigated. Three different strut thicknesses and strut spacing were trialled. In general these had similar performance to the tube mesh at 45% to 65% the heat transfer capacity of the louver fin surface. The resulting pressure drop was 38% to 42% of that of the louver fin surface. A delta-winglet design which positioned the deltas in a flow up configuration just in front of the tubes was examined. It was found that this configuration had an almost comparable capacity of 87% to a louver surface having the same fin pitch. On the other hand it had approximately half the pressure drop of 54% of the similar louver fin surface. This particularly low pressure drop makes this design preferable from an energy utilisation perspective. While a slight increase in coil area is required, this is offset by an almost 50% reduction in operating costs by reducing the parasitic energy requirements of the convection fans. The experimental data gathered for this Delta-Winglet design served to validate a succession of numerical simulations which were performed to estimate the performance of other configurations of multiple vortex generators. In addition the performance of combining a delta-wing with a louvred surface was investigated. It was found that increasing the number of delta-winglets or combining deltas with a louvred surface provided little improvement in heat transfer but increased pressure drop substantially. The louvre design itself was examined, and simulations were undertaken to estimate the effect of louvre angle, as well as louvre pitch. A hitherto unexamined concept was to investigate the effect of having louvres with serrated edges. It was found that an increase in louver angle by 5 degrees had negligible effect on heat transfer but increased the pressure drop by 17%. A variation in louver pitch showed a minimal variation in both heat transfer and pressure drop. Surprisingly a serrated louver showed a slight reduction in both heat transfer and pressure drop but this was miniscule. It was established throughout the course of the investigations that the bulk of the coil heat transfer is performed by the first tube row. Therefore the potential for increasing heat transfer by shifting some heat exchange to the down stream rows was examined. This was attempted by having progressively increasing louvre angles from the front of the coil to the rear. While a slight increase in heat transfer performance was achieved, this accomplished at the expense of a 13%-14% increase in pressure drop. The outcomes have shown that substantial net improvement of heat exchanger energy efficiency can be achieved through optimization of the turbulence generation along the fins of a tube fin heat exchanger. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1253254 / Thesis (Ph.D.) -- University of Adelaide, School of Mechanical Engineering, 2006
516

Värmestyrning I Handske

Macut, Pero, Ould Younes, Malek January 2007 (has links)
<p>This rapport is result of a project. The purpose of which was to design a circuit that is used in a heat glove. The heat glove is the technical aid which provides heat inside a glove.</p><p>It is specially suited for old people who have problems with cold hands because of decreased blood circulation.</p><p>There already was an old circuit in the glove that gives a constant current which develops heat from battery to glove through a circuit. The temperature is between 32 and 34 degrees.</p><p>The problem with the existing circuit was to regulate the temperature. There is only on/off switch and there is no way to adjust desirable value of the temperature.</p><p>In order to solve the problem the old circuit was investigated. A whole new circuit has developed which resulted in a control system with feedback. This system has a controller and a sensor. A sensor feels the current temperature and connects that to comparator where this shall compare with desirable value. With a potentiometer you can put in a desirable value.</p>
517

A numerical model of heat transfer to the atmosphere from an Arctic lead

Shreffler, Jack H. 13 January 1975 (has links)
Graduation date: 1975
518

An experimental study of flow boiling heat transfer enhancement in minichannels with porous mesh heating wall

Wang, Hailei 17 April 2006 (has links)
A unique channel surface enhancement technique via diffusion-bonding a layer of conductive fine wire mesh onto the heating wall was developed and used to experimentally study flow boiling enhancement in parallel microchannels. Each channel was 1000 μm wide and 510 μm high. A dielectric working fluid, HFE 7000, was used during the study. Two fine meshes as well as two mesh materials were investigated and compared. According to the flow boiling curves for each channel, the amount of wall superheat was greatly reduced for all the mesh channels at four stream-wise locations; and the critical heat fluxes (CHF) for mesh channels were significantly higher than that for a bare channel in the low vapor quality region. According to the plots of local flow boiling heat transfer coefficient h versus vapor quality, a consistent increasing trend for h with vapor quality was observed for all the tested channels until the vapor quality reached approximately 0.4. However, the three mesh channels showed much higher values of h than the bare channel, with the 100 mesh copper performing the best. Visualization using a high-speed camera was performed thereafter to provide some insights to this enhancement mechanism. A significant increase in nucleation sites and bubble generation was observed, and departure rates inside the mesh channels were attributed to the flow boiling enhancement. A sudden increase of h for mesh channels can also be attributed to the characteristics of nucleate boiling and indicates that nucleate boiling was the dominant heat transfer mode. Another interesting point observed was that the 100 mesh bronze outperformed the 200 mesh bronze for most of the studies. This suggests that nucleations happened inside the mesh openings, instead of on the mesh openings. In addition, an optimal mesh size should exist for HFE 7000 flow boiling. / Graduation date: 2006
519

Biaxial fatigue behavior of commercially pure titanium Ti-50A (Grade 2) and low-alloy titanium Ti-Code 12 (Grade 12) heat exchanger materials

Tobias, Benjamin C. 06 May 1985 (has links)
Material failures in heat exchangers are often closely tied to events associated with the conditions of service and operating parameters. These events can generally be attributed to adverse load application and higher than optimum operating temperatures that could lead to changes in the microstructure of the materials and fatigue failure of the component. However, fatigue failure in heat exchangers is usually associated with the presence of a biaxial stress condition. Two nonparallel forces create a two-dimensional stress field at the free surface of the structural element where the process and mechanism of fatigue failure normally initiate. An experimental investigation was conduct6d to evaluate the biaxial fatigue behavior of commercially pure titanium Ti-50A (Grade 2) and low-alloy titanium Ti-Code 12 (Grade 12) heat exchanger materials. The biaxial state of stress was composed of an axial stress and a superimposed torsional stress, applied in a thin-wall tubular specimen machined from titanium tubing. Torsional stress was applied independently using a torsion machine and a torque fixer assembly devised as part of this study. After applying the desired torsion, the torsionally stressed specimen was mounted on a closed-loop electrohydraulic machine for the application of axial cyclic loading. A minimum of four tests were conducted for each of three alternating stress levels at both high and low torsional stresses. The biaxial fatigue test under load control condition was done under fully reversed cycles equivalent to a biaxiality ratio of -1. These test parameters were determined from an analytical formulation based on Mohr's circle. The results are presented in terms of the various measured or calculated quantities versus number of cycles to fracture. Biaxial fatigue curves were drawn through the experimental points corresponding to Weibull's mean life criterion. The four data points exhibit scatter that appears to be related to the applied stress amplitude. It was also found that a correlation exists between the magnitude of applied cyclic biaxial stress and fatigue life to failure. In addition, the results have been discussed taking existing failure criteria into account. / Graduation date: 1985
520

An experimental study of fluid flow and heat transfer in rectangular microchannels

Popescu, Aristotel 30 November 2000 (has links)
Graduation date: 2001

Page generated in 0.1664 seconds