Spelling suggestions: "subject:"hecke operator"" "subject:"decke operator""
1 |
Die Andersonextension und 1-Motive.Brinkmann, Christoph. January 1991 (has links)
Inaugural-Dissertation.
|
2 |
Relations among Multiple Zeta Values and Modular Forms of Low LevelMa, Ding January 2016 (has links)
This thesis explores various connections between multiple zeta values and modular forms of low level. In the first part, we consider double zeta values of odd weight. We generalize a result of Gangl, Kaneko and Zagier on period polynomial relations among double zeta values of even weights to this setting. This answers a question asked by Zagier. We also prove a conjecture of Zagier on the inverse of a certain matrix in this setting. In the second part, we study multiple zeta values of higher depth. In particular, we give a criterion and a conjectural criterion for "fake" relations in depth 4. In the last part, we consider multiple zeta values of levels 2 and 3. We describe one connection with the Hecke operators T₂ and T₃, and another connection with newforms of level 2 and 3. We also give a conjectural generalization of the Eichler-Shimura-Manin correspondence to the spaces of newforms of levels 2 and 3.
|
3 |
A Lift of Cohomology Eigenclasses of Hecke OperatorsHansen, Brian Francis 24 May 2010 (has links) (PDF)
A considerable amount of evidence has shown that for every prime p &neq; N observed, a simultaneous eigenvector v_0 of Hecke operators T(l,i), i=1,2, in H^3(Γ_0(N),F(0,0,0)) has a “lift” v in H^3(Γ_0(N),F(p−1,0,0)) — i.e., a simultaneous eigenvector v of Hecke operators having the same system of eigenvalues that v_0 has. For each prime p>3 and N=11 and 17, we construct a vector v that is in the cohomology group H^3(Γ_0(N),F(p−1,0,0)). This is the first construction of an element of infinitely many different cohomology groups, other than modulo p reductions of characteristic zero objects. We proceed to show that v is an eigenvector of the Hecke operators T(2,1) and T(2,2) for p>3. Furthermore, we demonstrate that in many cases, v is a simultaneous eigenvector of all the Hecke operators.
|
4 |
Modular Symbols Modulo Eisenstein Ideals for Bianchi SpacesPowell, Kevin James January 2015 (has links)
The goal of this thesis is two-fold. First, it gives an efficient method for calculating the action of Hecke operators in terms of "Manin" symbols, otherwise known as "M-symbols," in the first homology group of Bianchi spaces. Second, it presents data that may be used to understand and better state an unpublished conjecture of Fukaya, Kato, and Sharifi concerning the structure of Bianchi Spaces modulo Eisenstein ideals [5]. Swan, Cremona, and others have studied the homology of Bianchi spaces characterized as certain quotients of hyperbolic 3-space [3], [13]. The first homology groups are generated both by modular symbols and a certain subset of them: the Manin symbols. This is completely analogous to the study of the homology of modular curves. For modular curves, Merel developed a technique for calculating the action of Hecke operators completely in terms of "Manin" symbols [10]. For Bianchi spaces, Bygott and Lingham outlined methods for calculating the action of Hecke operators in terms of modular symbols [2], [9]. This thesis generalizes the work of Merel to Bianchi spaces. The relevant Bianchi spaces are characterized by imaginary quadratic fields K. The methods described in this thesis deal primarily with the case that the ring of integers of K is a PID. Let p be an odd prime that is split in K. The calculations give the F_p-dimension of the homology modulo both p and an Eisenstein ideal. Data is given for primes less than 50 and the five Euclidean imaginary quadratic fields Q(√-1), Q(√-2), Q(√-3), Q(√-7), and Q(√-11). All of the data presented in this thesis comes from computations done using the computer algebra package Magma.
|
5 |
Computational Aspects of Maass WaveformsStrömberg, Fredrik January 2005 (has links)
<p>The topic of this thesis is computation of Mass waveforms, and we consider a number of different cases: Congruence subgroups of the modular group and Dirichlet characters (chapter 1); congruence subgroups and general multiplier systems and real weight (chapter 2); and noncongruence subgroups (chapter 3). In each case we first discuss the necessary theoretical background. We then outline the algorithm and display some of the results obtained by it.</p>
|
6 |
Computational Aspects of Maass WaveformsStrömberg, Fredrik January 2005 (has links)
The topic of this thesis is computation of Mass waveforms, and we consider a number of different cases: Congruence subgroups of the modular group and Dirichlet characters (chapter 1); congruence subgroups and general multiplier systems and real weight (chapter 2); and noncongruence subgroups (chapter 3). In each case we first discuss the necessary theoretical background. We then outline the algorithm and display some of the results obtained by it.
|
Page generated in 0.0656 seconds