Spelling suggestions: "subject:"helicasen"" "subject:"helicase""
1 |
Structural and functional characterization of nucleotide excision repair proteins / Strukturelle und funktionelle Charakterisierung von Nucleotid-Exzisions-Reparatur ProteinenWolski, Stefanie Carola January 2011 (has links) (PDF)
XPD is a 5‘-3‘ helicase of the superfamily 2. As part of the transcription factor IIH it functions in transcription initiation and nucleotide excision repair. This work focus on the role of XPD in nucleotide excision repair. NER is a DNA repair pathway unique for its broad substrate range. In placental mammals NER is the only repair mechanism able to remove lesions induced by UV-light. NER can be divided into four different steps that are conserved between pro- and eukaryotes. Step 1 consists of the initial damage recognition, during step 2 the putative damage is verified, in step 3 the verified damage is excised and in the 4th and final step the resulting gap in the DNA is refilled. XPD was shown to be involved in the damage verification step. It was possible to solve the first apo XPD structure by a MAD approach using only the endogenous iron from the iron sulfur cluster. Based on the apo XPD structure several questions arise: where is DNA bound? Where is DNA separated? How is damage verification achieved? What is the role of the FeS cluster? These questions were addressed in this work. Hypothesis driven structure based functional mutagenesis was employed and combined with detailed biochemical characterization of the variants. The variants were analyzed by thermal unfolding studies to exclude the possibility that the overall stability could be affected by the point mutation. DNA binding assays, ATPase assays and helicase assays were performed to delineate amino acid residues important for DNA binding, helicase activity and damage recognition. A structure of XPD containing a four base pair DNA fragment was solved by molecular replacement. This structure displays the polarity of the translocated strand with respect to the helicase framework. Moreover the properties of the FeS cluster were studied by electron paramagnetic resonance to get insights into the role of the FeS cluster. Furthermore XPD from Ferroplasma acidarmanus was investigated since it was shown that it is stalled at CPD containing lesions. The data provide the first detailed insight into the translocation mechanism of a SF2B helicase and reveal how polarity is achieved. This provides a basis for further anlayses understanding the combined action of the helicase and the 4Fe4S cluster to accomplish damage verification within the NER cascade. / XPD ist eine 5‘-3‘ Helicase der Superfamilie 2. Als Untereinheit des Transkriptionsfaktors IIH ist XPD in Transkriptionsinitiation und Nucleotid-Exzisions-Reparatur involviert. Diese Arbeit fokusiert auf die Rolle von XPD in der NER. NER ist ein DNA Reparatur Weg der bekannt ist für seine breite Substratspezifität. In Säugetieren ist NER der einzige Reparaturmechanismus, der fähig ist Läsionen zu reparieren, die durch UV Strahlung induziert werden. NER kann man in vier unterschiedliche Schritte aufteilen die zwischen Pro- und Eukaryoten konserviert sind. Schritt 1 besteht aus der initialen Schadenserkennung, während des zweiten Schrittes wird der mögliche Schaden verifiziert, im dritten Schritt wird der verifizierte Schaden ausgeschnitten und im vierten und letzten Schritt wird die resultierende Lücke in der DNA geschlossen. Es wurde gezeigt, dass XPD in die Schadensverifizierung involviert ist. Ein MAD Versuch, bei dem nur das endogene Eisen des Eisen-Schwefel-Clusters verwendet wurde ermöglichte die Strukturlösung der ersten apo XPD Struktur. Basierend auf der Struktur ergeben sich verschiedene Fragen: wo wird DNA gebunden? Wo wird DNA aufgetrennt? Wie wird Schadenserkennung ermöglicht? Was ist die Rolle des Eisen-Schwefel-Clusters? Diese Fragen werden in dieser Arbeit angesprochen. Strukturbasierte funktionelle Mutagenesestudien, die auf Hypothesen basiert sind, wurden angewendet und mit einer detailierten biochemischen Charakterizierung der Varianten kombiniert. Die Varianten wurden mittels thermischen Entfaltungsstudien analysiert, um die Möglichkeit auszuschliessen, dass die Stabilität durch die Punktmutation betroffen ist. DNA-Bindungs- Assays, ATPase Assays und Helikase Assays wurden durchgeführt um Aminosäurereste zu identifizieren, die für DNA Bindung, Helikase Aktivität und Schadenserkennung wichtig sind. Eine Struktur von XPD, die ein DNA Fragment mit vier Basen enthält, wurde mittels Molekularem Ersatz gelöst. Diese Struktur zeigt die Polarität des translozierenden DNA- Stranges im Verhältnis zu der Helikasestruktur auf. Desweiteren wurden die Eigenschaften des FeS Clusters mittels paramagnetischen Elektronenresonanz Studien untersucht, um Einblicke in die Rolle des FeS Clusters zu bekommen. Ausserdem wurde XPD aus Ferroplasma acidarmanus erforscht, da gezeigt wurde, dass es an CPD enthaltenden Läsionen hängen bleibt. Diese Daten stellen die ersten detailierten Einblicke in den Translokationsmechanismus einer SF2B Helikase dar und zeigen wie Polarität erzielt wird. Das ist eine Basis für weitere Analysen, um die kombinierte Aktion von Helikase und dem 4Fe4S Cluster zu verstehen, die zur Schadenserkennung in der NER Kaskade führt.
|
2 |
DHX36 function in RNA G-quadruplex-mediated posttranscriptional gene regulation / Funktion von DHX36 in RNA G-Quadruplex-vermittelter posttranskriptioneller GenregulierungSauer, Markus January 2019 (has links) (PDF)
The expression of genetic information into proteins is a key aspect of life. The efficient and exact regulation of this process is essential for the cell to produce the correct amounts of these effector molecules to a given situation. For this purpose, eukaryotic cells have developed many different levels of transcriptional and posttranscriptional gene regulation. These mechanisms themselves heavily rely on interactions of proteins with associated nucleic acids. In the case of posttranscriptional gene regulation an orchestrated interplay between RNA-binding proteins, messenger RNAs (mRNA), and non-coding RNAs is compulsory to achieve this important function.
A pivotal factor hereby are RNA secondary structures. One of the most stable and diverse representatives is the G-quadruplex structure (G4) implicated in many cellular mechanisms, such as mRNA processing and translation. In protein biosynthesis, G4s often act as obstacles but can also assist in this process. However, their presence has to be tightly regulated, a task which is often fulfilled by helicases.
One of the best characterized G4-resolving factors is the DEAH-box protein DHX36. The in vitro function of this helicase is extensively described and individual reports aimed to address diverse cellular functions as well. Nevertheless, a comprehensive and systems-wide study on the function of this specific helicase was missing, so far.
The here-presented doctoral thesis provides a detailed view on the global cellular function of DHX36. The binding sites of this helicase were defined in a transcriptome-wide manner, a consensus binding motif was deviated, and RNA targets as well as the effect this helicase exerts on them were examined. In human embryonic kidney cells, DHX36 is a mainly cytoplasmic protein preferentially binding to G-rich and G4-forming sequence motifs on more than 4,500 mRNAs. Loss of DHX36 leads to increased target mRNA levels whereas ribosome occupancy on and protein output of these transcripts are reduced. Furthermore, DHX36 knockout leads to higher RNA G4 levels and concomitant stress reactions in the cell. I hypothesize that, upon loss of this helicase, translationally-incompetent structured DHX36 target mRNAs, prone to localize in stress granules, accumulate in the cell. The cell reacts with basal stress to avoid cytotoxic effects produced by these mis-regulated and structured transcripts. / Die Umsetzung genetischer Information in Proteine stellt einen Schlüsselaspekt des Lebens dar. Dabei ist die effiziente und exakte Regulierung dieses Prozesses für die Zelle essentiell, um die korrekte Menge dieser Effektormoleküle in einer gegebenen Situation zu produzieren. Zu diesem Zweck haben eukaryotische Zellen viele verschiedene Ebenen der transkriptionellen und posttranskriptionellen Genregulation entwickelt. Diese Mechanismen wiederum beruhen insbesondere auf den Interaktionen von Proteinen mit assoziierten Nukleinsäuren. Im Fall der posttranskriptionellen Genregulation ist ein abgestimmtes Wechselspiel zwischen RNA-bindenden Proteinen, Boten-RNAs und nicht-kodierenden RNAs zwingend erforderlich um diese wichtige Funktion zu erfüllen.
Ein zentrales Element hierbei bilden RNA-Sekundärstrukturen. Einer der stabilsten und variantenreichsten Vertreter dieser Strukturen ist die G-Quadruplexstruktur (G4), die in vielen zellulären Mechanismen, wie zum Beispiel Prozessierung und Translation der Boten-RNA, involviert ist. Während der Proteinbiosynthese agieren G4s häufig als Hindernisse, können diesen Prozess allerdings auch unterstützen. In beiden Fällen muss deren Präsenz genau reguliert werden, was häufig durch Helikasen erfolgt.
Einer der bestcharakterisiertesten, G4-entwindenden Faktoren ist das DEAH-Box Protein DHX36. Die in vitro Funktion dieser Helikase wurde bereits ausführlich beschrieben und einzelne Berichte haben darüber hinaus versucht, ihr verschiedene Funktionen in der Zelle zuzuweisen. Nichtsdestotrotz fehlt bislang eine umfassende und systemweite Studie zur Funktion dieser speziellen Helikase.
Die hier präsentierte Doktorarbeit liefert einen detaillierten Blick auf die globale Funktion von DHX36 in der Zelle. Bindestellen dieser Helikase im Transkriptom wurden definiert, ein allgemeines Bindemotiv abgeleitet und RNA-Bindeziele sowie der Effekt, den diese Helikase auf jene ausübt, untersucht. In humanen embryonalen Nierenzellen ist DHX36 ein vorwiegend zytoplasmatisches Protein, das bevorzugt G-reiche und G4-bildende Sequenzmotive auf über 4.500 Boten-RNAs bindet. Verlust von DHX36 führt zu einem erhöhten Level dieser Boten-RNAs in der Zelle, wobei deren Besetzung mit Ribosomen und die damit verbundene Proteinproduktion reduziert ist. Weiterhin führt der Verlust von DHX36 zu einem höheren RNA G4 Level und zu gleichzeitigen Stressreaktionen in der Zelle. Meine Vermutung ist, dass sich bei einem Verlust von DHX36 translationsinkompetente, strukturierte und leicht akkumulierende Ziel-Boten-RNAs in der Zelle anreichern. Die Zelle reagiert darauf mit basalem Stress um zytotoxische Effekte dieser miss-regulierten und strukturierten Transkripte zu vermeiden.
|
3 |
Nucleotide Excision Repair: From Recognition to Incision of damaged DNA / Nukleotid-Exzisions-Reparatur: Vom Erkennen zum Schneiden der geschädigten DNARoth, Heide Marie January 2011 (has links) (PDF)
The Nucleotide Excision Repair (NER) pathway is able to remove a vast diversity of structurally unrelated DNA lesions and is the only repair mechanism in humans responsible for the excision of UV induced DNA damages. The NER mechanism raises two fundamental questions: 1) How is DNA damage recognition achieved discriminating damaged from non damaged DNA? 2) How is DNA incision regulated preventing endonucleases to cleave DNA non specifically but induce and ensure dual incision of damaged DNA? Thus, the aim of this work was to investigate the mechanisms leading from recognition to incision of damaged DNA. To decipher the underlying process of damage recognition in a prokaryotic model system, the intention of the first part of this work was to co crystallize the helicase UvrB form Bacillus caldotenax together with a DNA substrate comprising a fluorescein adducted thymine as an NER substrate. Incision assays were performed to address the question whether UvrB in complex with the endonuclease UvrC is able to specifically incise damaged DNA employing DNA substrates with unpaired regions at different positions with respect to the DNA lesion. The results presented here indicate that the formation of a specific pre incision complex is independent of the damage sensor UvrA. The preference for 5’ bubble substrate suggests that UvrB is able to slide along the DNA favorably in a 5’ → 3’ direction until it directly encounters a DNA damage on the translocating strand to then recruit the endonuclease UvrC. In the second part of this work, the novel endonuclease Bax1 from Thermoplasma acidophilum was characterized. Due to its close association to archaeal XPB, a potential involvement of Bax1 in archaeal NER has been postulated. Bax1 was shown to be a Mg2+ dependent, structure specific endonuclease incising 3’ overhang substrates in the single stranded region close to the ssDNA/dsDNA junction. Site directed mutagenesis of conserved amino acids was employed to identify putative active site residues of Bax1. In complex with the helicase XPB, however, incision activity of Bax1 is altered regarding substrate specificity. The presence of two distinct XPB/Bax1 complexes with different endonuclease activities indicates that XPB regulates Bax1 incision activity providing insights into the physical and functional interactions of XPB and Bax1. / Die Nukleotid-Exzisions-Reparatur (NER) ist in der Lage, eine Vielfalt an strukturell unterschiedlichen DNA Schädigungen zu entfernen, und ist überdies der einzige DNA-Reparaturmechanismus im Menschen, der UV induzierte DNA-Schädigungen entfernen kann. Der NER Mechanismus impliziert zwei grundlegende Fragen: 1) Wie wird geschädigte DNA erkannt und worauf gründet sich die Unterscheidung zwischen geschädigter und nicht geschädigter DNA? 2) Wie wird das Schneiden der DNA reguliert? Wie wird unspezifisches Schneiden verhindert und sichergestellt, dass die geschädigte DNA auf beiden Seiten der Schädigung herausgeschnitten wird? Das Ziel dieser Arbeit war es daher, die Mechanismen zu untersuchen, die vom Erkennen zum Herausschneiden geschädigter DNA führen. Um im bakteriellen Modelsystem den zugrundeliegenden Prozess der Schadenserkennung zu entschlüsseln, sollte im ersten Teil dieser Arbeit die Helikase UvrB aus Bacillus caldotenax zusammen mit einem geschädigten DNA Substrat kristallisiert werden. Als Schädigung wurde ein Fluorescein-Molekül genutzt, das an eine Thymin-Base gekoppelt wurde. Biochemische Experimente wurden durchgeführt um herauszufinden, ob UvrB im Komplex mit der Endonuklease UvrC spezifisch geschädigte DNA schneiden kann. Dafür wurden DNA-Substrate eingesetzt, die ungepaarte Basen an verschiedenen Stellen bezüglich der DNA-Schädigung enthielten. Die hier gezeigten Ergebnisse deuten darauf hin, dass ein spezifischer Komplex gebildet werden kann, der auch unabhängig von dem Schadenssensor UvrA zum Schneiden der DNA befähigt ist. Die Schnitt-Präferenz für die 5‘ ungepaarte Region lässt vermuten, dass UvrB bevorzugt in 5‘→3‘ Richtung an der DNA entlanggleiten kann. Sobald UvrB auf eine Schädigung auf diesem DNA Strang trifft, wird die Endonuklease UvrC rekrutiert. Im zweiten Teil dieser Arbeit wurde die neuartige Endonuklease Bax1 aus Thermoplasma acidophilum charakterisiert. Aufgrund der engen Assoziation zu archaischem XPB wurde eine Beteiligung an der archaischen NER postuliert. Es konnte gezeigt werden, dass Bax1 eine Mg2+ abhängige, strukturspezifische Endonuklease ist, die 3‘-Überhang Substrate im Einzelstrangbereich nahe des Einzelstrang/Doppelstrang Überganges schneidet. Konservierte Aminosäuren wurden gezielt verändert, um diejenigen Reste zu identifizieren, die möglicherweise das aktive Zentrum bilden. Im Komplex mit der Helikase XPB veränderte sich jedoch das Schneideverhalten im Hinblick auf die Substratspezifizität. Die Existenz von zwei verschiedenen XPB/Bax1 Komplexen mit unterschiedlicher Aktivität bezüglich des Schnittverhaltens könnte darauf hinweisen, dass XPB Bax1 reguliert. Diese Beobachtung erlaubt zugleich Einblicke in die Interaktion von XPB und Bax1 auf physikalischer und funktioneller Ebene.
|
4 |
Biochemical characterization of the TFIIH translocase XPB from \(Chaetomium\) \(thermophilum\) / Biochemische Charakterisierung der TFIIH Translokase XPB aus \(Chaetomium\) \(thermophilum\)Kappenberger, Jeannette Sarah January 2024 (has links) (PDF)
DNA repair and gene expression are two major cellular processes that are fundamental for the maintenance of biological life. Both processes require the enzymatic activity of the super family 2 helicase XBP, which is an integral subunit of the general transcription factor TFIIH. During transcription initiation, XPB catalyzes the initial melting of promoter DNA enabling RNA polymerase II to engage with the coding DNA strand and start gene transcription. In nucleotide excision repair, XPB acts in concert with the other TFIIH helicase XPD causing strand separation around a lesion site. Mutations within the genes encoding XPB or other TFIIH subunits are associated with different cancer types as well as with the autosomal recessive disorders Xeroderma Pigmentosum and trichothiodystrophy and rarely combined features of Xeroderma Pigmentosum and Cockayne syndrome.
In the last few years, great progress has been made towards unraveling the structure of TFIIH and its individual subunits including XPB. These structural insights tremendously improved our understandings with respect to the molecular interactions within this intriguing protein complex. However, the underlying regulation mechanisms that functionally control XPB during transcription and repair remained largely elusive. We thus executed the biochemical characterization of this protein to investigate the functional network that regulates XPB within the scaffold of TFIIH. Due to their enhanced stability compared to the human proteins, we utilized the proteins that originate from the thermophilic fungus Chaetomium thermophilum for this purpose as a model organism for eukaryotic TFIIH.
The present work provides novel insights into the enzymatic function and regulation of XPB. We could show that both, DNA and the TFIIH subunit p52 stimulate XPB’s ATPase activity and that the p52-mediated activity is further boosted by p8, another subunit within TFIIH. Surprisingly, DNA can activate XPB’s ATPase activity to a greater extent than its TFIIH interaction partners p52/p8, but when both, i.e. p52/p8 and DNA are present at the same time, p52 dominates the activation and the enzymatic speed is maintained at the level observed through the sole activation of p52/p8. We thus defined p52 as the master regulator of XPB that simultaneously activates and represses XPB’s enzymatic activity. Based on a correlative mutagenesis study of the main interface between p52 and XPB that was set into context with recent structural data, a model for the p52-mediated activation and speed limitation of XPB’s ATPase was proposed. The research on XPB’s ATPase was expanded with the investigation of the inhibition mechanism of XPB’s ATPase via the natural compound Triptolide. Furthermore, we investigated XPB’s DNA translocase function and could observe that XPB can only perform its translocase movement when it is fully incorporated into core TFIIH and this translocase movement is further enhanced by the nucleotide excision repair factor XPA. Fluorescence polarization measurements with nucleotide analogues revealed that XPB displays the highest affinity towards DNA in the ADP + Pi bound state and its binding is weakened when ADP is bound or the nucleotide is dissociated from the enzyme, suggesting a movement on the DNA during the distinct states of the ATPase cycle. Finally, the well-known and highly conserved RED motif was found to be the crucial element in XPB to enable this translocase movement. Combined, the data presented in this work provide novel insights into the intricate regulation network that controls XPB’s enzymatic activity within TFIIH and furthermore show that XPB’s enzymatic activity is tightly controlled by various factors. / DNA Reparatur und Genexpression sind zwei fundamentale zelluläre Prozesse die unabdingbar für die Aufrechterhaltung des biologischen Lebens sind. Beide Prozesse benötigen die Enzymaktivität der Superfamilie 2 Helikase XPB, welche eine Untereinheit des Transkriptionsfaktors TFIIH darstellt. Während der Transkriptions-Initiation katalysiert XPB das initiale Aufschmelzen der Promoter-DNA und befähigt dadurch die
RNA-Polymerase II dazu an den codierenden DNA Strang zu binden und die Genexpression zu starten. In der Nukleotid-Exzisions-Reparatur agiert XPB zusammen mit der zweiten TFIIH Helikase, XPD, und bewirkt die Öffnung des DNA Stranges an der Stelle des DNA-Schadens. Mutationen des XPB-Gens oder der Gene der anderen TFIIH
Untereinheiten sind mit verschiedenen Krebsarten, sowie den autosomal rezessiv vererbten Krankheiten Xeroderma Pigmentosum und Trichothiodystrophie assoziiert. In seltenen Fällen kann eine kombinierte Form von Xeroderma Pigmentosum und Cockayne Syndrom auftreten.
In den letzten Jahren wurde mittels der Cryo-EM die Strukturaufklärung von TFIIH und seinen Untereinheiten einschließlich XPB signifikant vorangebracht. Diese neuen
strukturellen Einsichten haben unser Verständnis über den molekularen Aufbau des TFIIH Komplexes entscheidend verbessert. Jedoch sind die Regulationsmechanismen, die XPB auf funktionaler Ebene kontrollieren, noch größtenteils unbekannt. Um das funktionelle Netzwerk, das XPB innerhalb von TFIIH reguliert, zu erforschen, haben wir die biochemische Charakterisierung von XPB verfolgt. Aufgrund ihrer erhöhten Stabilität gegenüber den humanen Proteinen wurden für diese Analyse die Proteine des
thermophilen Pilzes Chaetomium thermophilum als Modellorganismus für TFIIH verwendet.
Die vorgelegte Arbeit liefert neue Erkenntnisse über die enzymatische Funktion und Regulation von XPB. Wir konnten zeigen, dass sowohl DNA, als auch die TFIIH
Untereinheit p52 die ATPase Aktivität von XPB stimulieren und dass die p52-vermittelte Aktivierung durch p8, eine weitere Untereinheit von TFIIH, noch weiter verstärkt wird. In Gegenwart von DNA beobachtet man jedoch die höchste ATPase Aktivität. Wenn beide Aktivatoren, also p52/p8 und DNA, gleichzeitig anwesend waren, dominierte die niedrige p52-vermittelte Aktivierung gegenüber der DNA-vermittelten Aktivierung. Das p52-Protein agiert also als Aktivator und Deaktivator indem es die enzymatische Aktivität des XPB-Proteins gleichzeitig aktiviert und hemmt und kann damit folglich als Hauptregulator von XPB bezeichnet werden. Basierend auf einer korrelativen Mutagenese-Analyse der Interaktionsfläche zwischen p52 und XPB sowie auf den aktuellsten Strukturdaten, wurde ein Modell für die p52-vermittelte Aktivierung und Geschwindigkeitsregulierung von XPBs ATPase generiert. Des Weiteren wurde der Einfluss des Naturproduktes Triptolid auf die Hemmung der enzymatischen Aktivität des XPB Proteins untersucht. Darüber hinaus haben wir die doppelsträngige DNA-Translokase-Aktivität von XPB
analysiert und konnten feststellen, dass die Translokation nur erfolgen kann, wenn XPB vollständig in den Kern-TFIIH-Komplex integriert ist. Der Nukleotid-Exzisions-Reparatur-
Faktor XPA stimulierte diese Translokase-Aktivität zusätzlich. Fluoreszenz-Polarisations-Messungen mit Nukleotid-Analoga zeigten, dass XPB die höchste Affinität
für DNA im ADP + Pi gebundenen Zustand aufweist und dass diese Bindung gelockert wird, wenn ADP gebunden oder das Nukleotid dissoziiert ist. Dies deutet auf einen
Bewegungsmechanismus auf der DNA während der verschiedenen Stadien des ATPase-Zyklus hin. Abschließend konnten wir zeigen, dass das hochkonservierte RED-Motiv eine entscheidende Rolle für die Translokase Bewegung des XPB-Proteins einnimmt. Zusammenfassend präsentiert diese Arbeit neue Erkenntnisse, die unser Verständnis des Regulierungsnetzwerkes, das die enzymatische Aktivität von XPB innerhalb von TFIIH steuert, entscheidend vorangebracht haben.
|
Page generated in 0.0473 seconds