• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • Tagged with
  • 10
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization of the resonant electromagnetic mode in helicon discharges

Panevsky, Martin Ivanov 28 August 2008 (has links)
Not available / text
2

Characterization of the resonant electromagnetic mode in helicon discharges

Panevsky, Martin Ivanov, Bengtson, Roger D., January 2003 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2003. / Supervisor: Roger Bengtson. Vita. Includes bibliographical references. Available also from UMI Company.
3

Characterization of the resonant electromagnetic mode in helicon discharges /

Panevsky, Martin Ivanov, January 2003 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2003. / Vita. Includes bibliographical references (leaves 94-97). Also available in an electronic version.
4

Solution of the neutrals species in a weakly ionised plasma by means of the SIMPLE algorithm

Zorzetto, Alberto January 2021 (has links)
In recent years, the Helicon Plasma Thruster (HPT) has become one of the most promising technologies of in-space electric propulsion. T4i Technology for Propulsion and Innovation S.P.A. is one of the leading companies working with this new type of systems, and their thruster, REGULUS, is the first HPT ever to be operated in orbit. To better assess the performance of the motor, the company has developed, in conjunction with the University of Padova and the University of Bologna, a numerical tool called 3DVIRTUS (3Dimensional adVanced fluId dRifT diffUsion plaSma solver), which simulates the plasma dynamics in the production stage of the thruster. The model describes the species present in the plasma (electrons, ions, excited and neutrals) by means of a fluid approach, as the plasma density in this part of the motor is in the order of 1017-1018 m−3. Particularly, the tool considers the Drift-Diffusion (DD) approximation instead of the full set of fluid momentum equations. Unfortunately, for typical discharges applied to HPTs, this assumption is accurate only for the electrons species, but not for the heavy species in the plasma, i.e. ions, excited and neutrals. The thesis project presented in this report, executed in collaboration with T4i S.P.A, proposes an updated numerical tool which solves the fully coupled continuity and momentum equations for the neutrals species in the plasma. The new solver is implemented with OpenFOAM®, a finite volume library written in C++, and the Semi-Implicit Method for Pressure Linked Equations (SIMPLE) is utilised to resolve the pressure-velocity coupling in the continuity and momentum equations. Four different test cases are considered: a one-dimensional typical discharge, a cylindrical discharge, the Schwabedissen GECICP reactor experiment and the Piglet helicon reactor of Lafleur. The obtained results have been compared against the original drift-diffusion solver, and when available, with experimental data. The new tool produced similar results to the older one, even though the neutrals density computed with the former generally presented stronger gradients. Additionally, in the case of the GECICP and Piglet reactors, the agreement in terms of electrons density computed with the new solver was satisfactory compared to the empirical data. Nevertheless, all the analysis performed during the thesis project revealed that the keys to obtain physically realistic results are the boundary conditions for the neutrals’ pressure and velocity, which greatly affects the outcome of the simulations. Overall, the new solver has shown to provide accurate results with reasonable computational time. / Under de senaste åren har Helicon Plasma Thruster (HPT) blivit en av de mest lovande teknikerna för elektrisk framdrift i rymden. T4i Technology for Propulsion and Innovation S.P.A. är ett av de ledande företagen som arbetar med denna nya typ av system, och deras motor, REGULUS, är den första HPT som har demonstrerats fungera i omloppsbana. För att bättre kunna bedöma motorns prestanda har företaget tillsammans med universitetet i Padova och universitetet i Bologna utvecklat ett numeriskt verktyg som kallas 3DVIRTUS (3Dimensional adVanced fluId dRifT diffUsion plaSma solver), som simulerar plasmadynamiken i thrusterns produktionsstadium. Modellen beskriver de typer av partikler som finns i plasma (elektroner, joner, exciterade och neutrala) med hjälp av en vätskeapproximation, eftersom plasmatätheten i denna del av motorn är i storleksordningen 10171018 m−3. Särskilt överväger verktyget approximationen Drift-Diffusion (DD) istället för hela uppsättningen vätska ekvationer. Dessvärre, för typiska urladdningar som appliceras på HPT, är detta antagande korrekt endast för elektroner, men inte för de tunga partiklarna i plasma, dvs joner, exciterade och neutrala partiklar. Avhandlingsprojektet som presenteras i denna rapport, utfört i samarbete med T4i S.P.A, föreslår ett uppdaterat numeriskt verktyg som löser de fullständigt kopplade kontinuitets och rörelseekvationerna för neutrala partiklar i plasma. Den nya lösaren implementeras med OpenFOAM®, ett begränsat volymbibliotek skrivet i C++, och Semi-Implicit Method for Pressure Linked Equations (SIMPLE) används för att lösa tryck hastighetskopplingen i kontinuitets och rörelseekvationer. Fyra olika testfall övervägs: en endimensionell typisk urladdning, en cylindrisk urladdning, Schwabedissen GECICP reaktorförsöket och Piglet helicon reaktorn i Lafleur. De erhållna resultaten har jämförts med det ursprungliga driftdiffusions antagandet, och när möjligt, med experimentella data. Det nya verktyget gav liknande resultat som det äldre, även om densiteten av neutrala partiklar beräknad med den tidigare generellt visade starkare gradienter. Dessutom, när det gäller GECICP och Piglet reaktorerna, var överenskommelsen i termer av elektrontäthet beräknad med den nya lösaren tillfredsställande jämfört med empiriska data. Ändå avslöjade all analys som gjordes under avhandlingsprojektet att nycklarna för att få fysiskt realistiska resultat är randvillkoren för de neutrala partiklarnas tryck och hastighet, vilket i hög grad påverkar resultatet av simuleringarna. Sammantaget har den nya lösaren visat sig ge noggranna resultat med rimlig beräkningstid.
5

Facility effects on Helicon ion thruster operation

Caruso, Natalie R. S. 27 May 2016 (has links)
In order to enable comparison of Helicon ion thruster performance across different vacuum test facilities, an understanding of the effect of operating pressure on plasma plume properties is required. Plasma property measurements are compared for thruster operation at two separate vacuum facility operating pressures to determine the effect of neutral ingestion on Helicon ion thruster operation. The ion energy distribution function (IEDF), electron temperature, ion number density, and plasma potential are measured along the thruster main axis for a replica of the Madison Helicon eXperiment. Plasma property values recorded at the ‘high-pressure condition’ (3.0×10^(-4) Torr corrected for argon) are compared to values recorded at the ‘low-pressure condition’ (1.2×10^(-5) Torr corrected for argon) for thruster operation at 100 - 500 watts radio frequency forward power, 340 – 700 gauss source region magnetic field strength, and 1.3 - 60 sccm argon volumetric flow rate (0.039-1.782 mg/s). Differences in plasma behavior at the ‘high-pressure condition’ result from two primary neutral-plume interactions: collisions between accelerated beam ions and ingested neutrals leading to a reduction of ion energy and neutral ionization downstream of the thruster exit due to electron-neutral collisions. Electron temperature at higher operating pressures is lowered due to an electron cooling effect resulting from repeated collisions with neutral atoms. Results suggest that Helicon ion thruster plasma properties are greatly influenced when subjected to neutral ingestion.
6

Optimum design and 3D CAD/CAE simulation of spiroid and worm gears

Song, Yongle January 2001 (has links)
No description available.
7

Ion acceleration mechanisms of helicon thrusters

Williams, Logan Todd 08 April 2013 (has links)
A helicon plasma source is a device that can efficiently ionize a gas to create high density, low temperature plasma. There is growing interest in utilizing a helicon plasma source in propulsive applications, but it is not yet known if the helicon plasma source is able to function as both an ion source and ion accelerator, or whether an additional ion acceleration stage is required. In order to evaluate the capability of the helicon source to accelerate ions, the acceleration and ionization processes must be decoupled and examined individually. To accomplish this, a case study of two helicon thruster configurations is conducted. The first is an electrodeless design that consists of the helicon plasma source alone, and the second is a helicon ion engine that combines the helicon plasma source with electrostatic grids used in ion engines. The gridded configuration separates the ionization and ion acceleration mechanisms and allows for individual evaluation not only of ion acceleration, but also of the components of total power expenditure and the ion production cost. In this study, both thruster configurations are fabricated and experimentally characterized. The metrics used to evaluate ion acceleration are ion energy, ion beam current, and the plume divergence half-angle, as these capture the magnitude of ion acceleration and the bulk trajectory of the accelerated ions. The electrode-less thruster is further studied by measuring the plasma potential, ion number density, and electron temperature inside the discharge chamber and in the plume up to 60 cm downstream and 45 cm radially outward. The two configurations are tested across several operating parameter ranges: 343-600 W RF power, 50-450 G magnetic field strength, 1.0-4.5 mg/s argon flow rate, and the gridded configuration is tested over a 100-600 V discharge voltage range. Both configurations have thrust and efficiency below that of contemporary thrusters of similar power, but are distinct in terms of ion acceleration capability. The gridded configuration produces a 65-120 mA ion beam with energies in the hundreds of volts that is relatively collimated. The operating conditions also demonstrate clear control over the performance metrics. In contrast, the electrodeless configuration generally produces a beam current less than 20 mA at energies between 20-40 V in a very divergent plume. The ion energy is set by the change in plasma potential from inside the device to the plume. The divergence ion trajectories are caused by regions of high plasma potential that create radial electric fields.. Furthermore, the operating conditions have limited control of the resulting performance metrics. The estimated ion production cost of the helicon ranged between 132-212 eV/ion for argon, the lower bound of which is comparable to the 157 eV/ion in contemporary DC discharges. The primary power expenditures are due to ion loss to the walls and high electron temperature leading to energy loss at the plasma sheaths. The conclusion from this work is that the helicon plasma source is unsuitable as a single-stage thruster system. However, it is an efficient ion source and, if paired with an additional ion acceleration stage, can be integrated into an effective propulsion system.
8

Magnetic nozzle plume plasma simulation through a Particle-In-Cell approach in a 3-D domain for a Helicon Plasma Thruster. : A collaboration with REGULUS project T4i Technology for Propulsion and Innovation s.p.a.

Vesco, Cesare January 2021 (has links)
Recent advances in plasma-based propulsion systems have led to the development of electromagnetic Radio-Frequency (RF) plasma generation and acceleration systems, called Helicon Plasma Thrusters (HPT). One of the pioneer companies developing this new type of space propulsion is T4i Technology for Propulsion and Innovation s.p.a., with its cutting-edge project called REGULUS, among which this study has been performed. A crucial part of HPT systems is the acceleration region, where, by the means of a magnetic nozzle, the thermal energy of the plasma is converted into axial acceleration and, in turn, into thrust. This study is focused on the numerically simulation of the plasma dynamics in the acceleration stage, using Xenon gas. A three-dimensional full Particle-In-Cell (PIC) simulation strategy is used to simulate the plume in the magnetic nozzle. The code developed for the plasma simulation is based on the open-source software Spacecraft Plasma Interaction Software (SPIS). The code has been conveniently modified and improved, neutrals and collision processes were added to evaluate their impact on the plasma properties. The features added improved the validity of the results, now one step closer to the physical reality. The code has been proven to be an extremely versatile and powerful tool for optimization and adaptation to different mission scenarios. / De senaste framstegen i plasmaframdrivning har lett till utvecklingen Helicon Plasma Thruster (HPT) som kombinerar elektromagnetisk högfrekvent (RF) plasmakälla och ett accelerationssystem. En av företagen som är pionjärer i att utveckla denna nya framdrivningsteknik är T4i Technology for Propulsion and Innovation s.p.a., med dess banbrytande projekt REGULUS, som detta arbete bygger på. En viktig del av HPT-systemet är accelerationsområde där plasmats termiska energin omvandlas till axiell accelleration i en magnetisk dysa. Denna rapport fokuserar på numeriska modelleringen av plasmadynamiken accelerationsområdet vid användning av Xenongasen. En tredimensionell Particle-In-Cell (PIC) simulering används för att studera plasmautflödet i magnetiska dysan. Koden bygger på den öppna mjukvaran Spacecraft Plasma interaction Software (SPIS). Koden har modifierats och förbättrats, en neutral komponent samt kollisionsprocesser har lagts till och deras påverkan på plasmabeteende har studerats. Dessa nya element förbättrade giltigheten av simulerings-resultaten. Nu ett steg närmre den fysiska verkligheten. Koden är ett mångsidigt och kraftfullt verktyg för optimering och anpassning till olika användningsscenarier.
9

Thermal phenomena and power balance in a helicon plasma

Berisford, Daniel Floyd 06 August 2012 (has links)
This work is motivated by the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) experiment. This device uses a helicon antenna to generate a plasma inside a dielectric tube, which is radially confined and directed towards the rocket nozzle by an axial magnetic field. An ion cyclotron heating antenna further heats the ions, and a magnetic nozzle accelerates the plasma along the confining magnetic field as it leaves the rocket, ultimately allowing it to detach from the magnetic field and produce thrust. The experimental research presented here provides insight into the physical mechanisms of power flow in a helicon system by providing an overall system power balance in the form of heat flux measurements, and exploring changes in the heat fluxes in different parts of the system in response to varying operational parameters. An infrared (IR) camera measures the total heat flux into the dielectric tube surface, and axially scanned bolometer and UV photodiode probes measure the radial power loss from particles and radiation. Results from IR camera measurements on three different helicon systems are presented: the VASIMR VX-50 experiment, the VASIMR VX-CR experiment, and the University of Texas at Austin (UT) helicon experiment. These results demonstrate the development of the IR camera diagnostic for use on helicon systems of varying scale and geometry, and show reasonable agreement as to the fraction of input power lost to the dielectric tube walls. On the UT experiment, the results presented account for essentially all of the input power, providing a full system power balance. The data from all three experiments indicate that radial transport of ions to the interior wall is the dominant mechanism of power loss, with UV radiation contributing a small percentage. Additional experiments on the UT helicon explore energy and particle transport to the wall due to capacitive coupling of ions near the antenna. These experiments show clear damage to the dielectric tube surface directly under the antenna, due to physical plasma etching of the surface by bombarding ions that are accelerated into the wall by local electric fields from the antenna. / text
10

Experimental Characterization of Plasma Detachment from Magnetic Nozzles

Olsen, Christopher 16 September 2013 (has links)
Magnetic nozzles, like Laval nozzles, are observed in several natural systems and have application in areas such as electric propulsion and plasma processing. Plasma flowing through these nozzles is inherently tied to the field lines and must separate for momentum redirection or particle transport to occur. Plasma detachment and associated mechanisms from a magnetic nozzle are investigated. Experimental results are presented from the plume of the VASIMR® VX-200 device flowing along an axisymmetric magnetic nozzle and operated at two ion energies to explore momentum dependent detachment. The argon plume expanded into a 150m3 vacuum chamber where the background pressure was low enough that charge-exchange mean-free-paths were longer than experiment scale lengths. This magnetic nozzle system is demonstrated to hydrodynamically scale up to astrophysical plasmas, particularly the solar chromosphere, implying general relevance to all systems. Plasma parameters were mapped over a large spatial range using measurements from multiple plasma diagnostics. The data show that the plume does not follow the magnetic field lines. A mapped integration of the ion flux shows the plume may be divided into three regions where 1) the plume briefly follows the magnetic flux, 2) diverges quadratically before 3) expanding with linear trajectories. Transitioning from region 1→2, the ion flux departs from the magnetic flux suggesting ion detachment. An instability forms in region 2 driving an oscillating electric field that causes ions to expand before enhancing electron cross-field transport through anomalous resistivity. Transitioning from region 2→3 the electric field dissipates, the trajectories linearize, and the plume effectively detaches. A delineation of sub-to-super Alfvénic flow aligns well with the inflection points of the linearization without a change in magnetic topology. The detachment process is best described as a two part process: First, ions detach by a breakdown of the magnetic moment when the quantity |v/fcLB| becomes of order unity. Second, the turbulent electric field enhances electron transport up to a factor of 4±1 above collisional diffusion; electron cross-field velocities approximate that of the ions and depart on more centralized field lines. Electrons are believed to detach by breakdown of magnetic moment further downstream in the weaker magnetic field.

Page generated in 0.0473 seconds