• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 11
  • 1
  • Tagged with
  • 51
  • 51
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Response of Helicoverpa armigera to agricultural environments diversified through companion planting.

Renee Herde Unknown Date (has links)
This study investigated the potential of companion planting as a strategy to aid in the management of Helicoverpa armigera in tomato and capsicum cropping systems. The investigaitons showed that a companion planting type system is unlikely to confer any benefits to the management of H. armigera in these crops. The project has contributed to the understanding of H. armigera host selection and how the pest responds to a diversified environment. Companion planting and vegetational diversity are strategies for reducing pest incidence on crops. Many theories have been devised to explain how introducing more than one plant species to a cropping space may reduce the incidence of a pest. Five ecological theories formed the basis of experiments in this study: The resource concentration hypothesis - Herbivores are more likely to find and remain on hosts that are growing in dense or nearly pure stands (Root, 1973). Associational resistance/Plant apparency - Crop plants grown as monocultures are more apparent to herbivorous insects than plants in diverse natural systems (Tahvanainen and Root, 1972). Trap cropping – the use of plants within a cropping area to attract oviposition away from the main crop (Banks and Ekbom, 1999). The ability of H. armigera to learn in regard to host seleciton (Cunningham et al., 1998a). The natural enemies hypothesis - generalist and specialist natural enemies are expected to be more abundant in diverse rather than simple systems (Root, 1973) A tall variety of sorghum (the forage variety Chopper) was tested for its ability to disrupt host location. Sorghum was planted around plots of tomatoes to act as a screen to disrupt visual cues for host location by Helicoverpa spp. No difference was found in egg numbers on tomatoes with or without sorghum companions. However, significantly higher numbers of Helicoverpa spp. larvae were found in the sorghum at flowering than in the tomatoes. This suggested the sorghum was acting as a trap crop, diverting oviposition away from the tomato crop. However, due to a short period of flowering and therefore peak attractiveness to H. armigera, sorghum was not considered to be a suitable companion plant for inclusion in commercial tomato production systems. A host preference study was conducted to determine the preferences of H. armigera for crop plants and possible companions in the hope of finding a suitable trap crop species. Tomatoes were shown to be a highly preferred plant making it difficult to find a compatible trap crop species that would be more attractive than the main crop. However, capsicums were less prefered and therefore more suitable for this type of experimentation. Marigolds were also found to be a highly preferred plant and formed the basis for further investigations into trap cropping systems. Field experiments were conducted in successive years in two geographical locations to assess the suitability of marigolds as a trap crop for capsicums in a field situation. However, in both years H. armigera incidence was extremely and unusually low leading to inconclusive results. A glasshouse experiment was performed to assess if the ratio of capsicum plants to marigolds plants had an effect on which species H. armigera would choose for oviposition. It was found that as more capsicum plants were introduced, moths became less likely to oviposit on the supposedly more preferred marigold plant. The diminishing attractiveness of a more preferred host in the presence of other hosts is a new observation of H. armigera behaviour. This result suggests that marigolds would be unlikely to be a successful trap crop in a field situation. The ability of H. armigera to learn in regard to host selection and the influence of this on host selection in the field was investigated. No evidence of learning was found. This was the first study investigating the effect of learning in a field situation; previously the behaviour had only been investigated in a laboratory situation (Cunningham, et al. 1998a). The ability of the Australian assassin bug, Pristhesancus plagipennis (Walker) (Hemiptera: Reduviidae) to predate H. armigera larvae on capsicum plants was investigated. This predator has been sucessfully been used for H. armigera management in cotton (Grundy, 2000b), but had not been investigated in horticultural crops. Significant reductions in larvae were achieved in treatments where assassin bugs were introduced. This predator warrants further investigation for inclusion in commercial integrated pest managment programs for capsicums. Pest repellent plants were also considered. Previous to this study, very little research work had been conducted on repellent plants for H. armigera. The herbs investigated were catnip (Nepta cataria), tansy (Tanacetum vulgare), basil (Ocium basilicum) and coriander (Coriander sativum). An olfactometer system was designed and built to test H. armigera moths’ responses to odours from the herbs. Glasshouse experiments were also conducted. No repellent activity was recorded with any of the herbs tested. The results of this study support the theory that Helicoverpa spp. employ a strategy of passive host selection as suggested by Firempong (1986). This means that all available plants in an area may be oviposited on with successful ovipostion and larval development leading to the future utilisation of a species as a host plant. The implication of this finding is that in-field trap cropping is unlikely to be a successful strategy for reducing H. armigera oviposition in tomato or capsicum production systems in Australia. In cotton crops in Australia, trap cropping is used as part of an area wide management strategy and aims to reduce the total Helicoverpa spp. population of a region. Such a strategy may also be successful in horticultural crops but only with the full participation of the growers of all crops that are attractive to H. armigera in a horticultural growing region. Due to the diverse nature of horticultural production this may be a difficult task.
42

Response of Helicoverpa armigera to agricultural environments diversified through companion planting.

Renee Herde Unknown Date (has links)
This study investigated the potential of companion planting as a strategy to aid in the management of Helicoverpa armigera in tomato and capsicum cropping systems. The investigaitons showed that a companion planting type system is unlikely to confer any benefits to the management of H. armigera in these crops. The project has contributed to the understanding of H. armigera host selection and how the pest responds to a diversified environment. Companion planting and vegetational diversity are strategies for reducing pest incidence on crops. Many theories have been devised to explain how introducing more than one plant species to a cropping space may reduce the incidence of a pest. Five ecological theories formed the basis of experiments in this study: The resource concentration hypothesis - Herbivores are more likely to find and remain on hosts that are growing in dense or nearly pure stands (Root, 1973). Associational resistance/Plant apparency - Crop plants grown as monocultures are more apparent to herbivorous insects than plants in diverse natural systems (Tahvanainen and Root, 1972). Trap cropping – the use of plants within a cropping area to attract oviposition away from the main crop (Banks and Ekbom, 1999). The ability of H. armigera to learn in regard to host seleciton (Cunningham et al., 1998a). The natural enemies hypothesis - generalist and specialist natural enemies are expected to be more abundant in diverse rather than simple systems (Root, 1973) A tall variety of sorghum (the forage variety Chopper) was tested for its ability to disrupt host location. Sorghum was planted around plots of tomatoes to act as a screen to disrupt visual cues for host location by Helicoverpa spp. No difference was found in egg numbers on tomatoes with or without sorghum companions. However, significantly higher numbers of Helicoverpa spp. larvae were found in the sorghum at flowering than in the tomatoes. This suggested the sorghum was acting as a trap crop, diverting oviposition away from the tomato crop. However, due to a short period of flowering and therefore peak attractiveness to H. armigera, sorghum was not considered to be a suitable companion plant for inclusion in commercial tomato production systems. A host preference study was conducted to determine the preferences of H. armigera for crop plants and possible companions in the hope of finding a suitable trap crop species. Tomatoes were shown to be a highly preferred plant making it difficult to find a compatible trap crop species that would be more attractive than the main crop. However, capsicums were less prefered and therefore more suitable for this type of experimentation. Marigolds were also found to be a highly preferred plant and formed the basis for further investigations into trap cropping systems. Field experiments were conducted in successive years in two geographical locations to assess the suitability of marigolds as a trap crop for capsicums in a field situation. However, in both years H. armigera incidence was extremely and unusually low leading to inconclusive results. A glasshouse experiment was performed to assess if the ratio of capsicum plants to marigolds plants had an effect on which species H. armigera would choose for oviposition. It was found that as more capsicum plants were introduced, moths became less likely to oviposit on the supposedly more preferred marigold plant. The diminishing attractiveness of a more preferred host in the presence of other hosts is a new observation of H. armigera behaviour. This result suggests that marigolds would be unlikely to be a successful trap crop in a field situation. The ability of H. armigera to learn in regard to host selection and the influence of this on host selection in the field was investigated. No evidence of learning was found. This was the first study investigating the effect of learning in a field situation; previously the behaviour had only been investigated in a laboratory situation (Cunningham, et al. 1998a). The ability of the Australian assassin bug, Pristhesancus plagipennis (Walker) (Hemiptera: Reduviidae) to predate H. armigera larvae on capsicum plants was investigated. This predator has been sucessfully been used for H. armigera management in cotton (Grundy, 2000b), but had not been investigated in horticultural crops. Significant reductions in larvae were achieved in treatments where assassin bugs were introduced. This predator warrants further investigation for inclusion in commercial integrated pest managment programs for capsicums. Pest repellent plants were also considered. Previous to this study, very little research work had been conducted on repellent plants for H. armigera. The herbs investigated were catnip (Nepta cataria), tansy (Tanacetum vulgare), basil (Ocium basilicum) and coriander (Coriander sativum). An olfactometer system was designed and built to test H. armigera moths’ responses to odours from the herbs. Glasshouse experiments were also conducted. No repellent activity was recorded with any of the herbs tested. The results of this study support the theory that Helicoverpa spp. employ a strategy of passive host selection as suggested by Firempong (1986). This means that all available plants in an area may be oviposited on with successful ovipostion and larval development leading to the future utilisation of a species as a host plant. The implication of this finding is that in-field trap cropping is unlikely to be a successful strategy for reducing H. armigera oviposition in tomato or capsicum production systems in Australia. In cotton crops in Australia, trap cropping is used as part of an area wide management strategy and aims to reduce the total Helicoverpa spp. population of a region. Such a strategy may also be successful in horticultural crops but only with the full participation of the growers of all crops that are attractive to H. armigera in a horticultural growing region. Due to the diverse nature of horticultural production this may be a difficult task.
43

Response of Helicoverpa armigera to agricultural environments diversified through companion planting.

Renee Herde Unknown Date (has links)
This study investigated the potential of companion planting as a strategy to aid in the management of Helicoverpa armigera in tomato and capsicum cropping systems. The investigaitons showed that a companion planting type system is unlikely to confer any benefits to the management of H. armigera in these crops. The project has contributed to the understanding of H. armigera host selection and how the pest responds to a diversified environment. Companion planting and vegetational diversity are strategies for reducing pest incidence on crops. Many theories have been devised to explain how introducing more than one plant species to a cropping space may reduce the incidence of a pest. Five ecological theories formed the basis of experiments in this study: The resource concentration hypothesis - Herbivores are more likely to find and remain on hosts that are growing in dense or nearly pure stands (Root, 1973). Associational resistance/Plant apparency - Crop plants grown as monocultures are more apparent to herbivorous insects than plants in diverse natural systems (Tahvanainen and Root, 1972). Trap cropping – the use of plants within a cropping area to attract oviposition away from the main crop (Banks and Ekbom, 1999). The ability of H. armigera to learn in regard to host seleciton (Cunningham et al., 1998a). The natural enemies hypothesis - generalist and specialist natural enemies are expected to be more abundant in diverse rather than simple systems (Root, 1973) A tall variety of sorghum (the forage variety Chopper) was tested for its ability to disrupt host location. Sorghum was planted around plots of tomatoes to act as a screen to disrupt visual cues for host location by Helicoverpa spp. No difference was found in egg numbers on tomatoes with or without sorghum companions. However, significantly higher numbers of Helicoverpa spp. larvae were found in the sorghum at flowering than in the tomatoes. This suggested the sorghum was acting as a trap crop, diverting oviposition away from the tomato crop. However, due to a short period of flowering and therefore peak attractiveness to H. armigera, sorghum was not considered to be a suitable companion plant for inclusion in commercial tomato production systems. A host preference study was conducted to determine the preferences of H. armigera for crop plants and possible companions in the hope of finding a suitable trap crop species. Tomatoes were shown to be a highly preferred plant making it difficult to find a compatible trap crop species that would be more attractive than the main crop. However, capsicums were less prefered and therefore more suitable for this type of experimentation. Marigolds were also found to be a highly preferred plant and formed the basis for further investigations into trap cropping systems. Field experiments were conducted in successive years in two geographical locations to assess the suitability of marigolds as a trap crop for capsicums in a field situation. However, in both years H. armigera incidence was extremely and unusually low leading to inconclusive results. A glasshouse experiment was performed to assess if the ratio of capsicum plants to marigolds plants had an effect on which species H. armigera would choose for oviposition. It was found that as more capsicum plants were introduced, moths became less likely to oviposit on the supposedly more preferred marigold plant. The diminishing attractiveness of a more preferred host in the presence of other hosts is a new observation of H. armigera behaviour. This result suggests that marigolds would be unlikely to be a successful trap crop in a field situation. The ability of H. armigera to learn in regard to host selection and the influence of this on host selection in the field was investigated. No evidence of learning was found. This was the first study investigating the effect of learning in a field situation; previously the behaviour had only been investigated in a laboratory situation (Cunningham, et al. 1998a). The ability of the Australian assassin bug, Pristhesancus plagipennis (Walker) (Hemiptera: Reduviidae) to predate H. armigera larvae on capsicum plants was investigated. This predator has been sucessfully been used for H. armigera management in cotton (Grundy, 2000b), but had not been investigated in horticultural crops. Significant reductions in larvae were achieved in treatments where assassin bugs were introduced. This predator warrants further investigation for inclusion in commercial integrated pest managment programs for capsicums. Pest repellent plants were also considered. Previous to this study, very little research work had been conducted on repellent plants for H. armigera. The herbs investigated were catnip (Nepta cataria), tansy (Tanacetum vulgare), basil (Ocium basilicum) and coriander (Coriander sativum). An olfactometer system was designed and built to test H. armigera moths’ responses to odours from the herbs. Glasshouse experiments were also conducted. No repellent activity was recorded with any of the herbs tested. The results of this study support the theory that Helicoverpa spp. employ a strategy of passive host selection as suggested by Firempong (1986). This means that all available plants in an area may be oviposited on with successful ovipostion and larval development leading to the future utilisation of a species as a host plant. The implication of this finding is that in-field trap cropping is unlikely to be a successful strategy for reducing H. armigera oviposition in tomato or capsicum production systems in Australia. In cotton crops in Australia, trap cropping is used as part of an area wide management strategy and aims to reduce the total Helicoverpa spp. population of a region. Such a strategy may also be successful in horticultural crops but only with the full participation of the growers of all crops that are attractive to H. armigera in a horticultural growing region. Due to the diverse nature of horticultural production this may be a difficult task.
44

Response of Helicoverpa armigera to agricultural environments diversified through companion planting.

Renee Herde Unknown Date (has links)
This study investigated the potential of companion planting as a strategy to aid in the management of Helicoverpa armigera in tomato and capsicum cropping systems. The investigaitons showed that a companion planting type system is unlikely to confer any benefits to the management of H. armigera in these crops. The project has contributed to the understanding of H. armigera host selection and how the pest responds to a diversified environment. Companion planting and vegetational diversity are strategies for reducing pest incidence on crops. Many theories have been devised to explain how introducing more than one plant species to a cropping space may reduce the incidence of a pest. Five ecological theories formed the basis of experiments in this study: The resource concentration hypothesis - Herbivores are more likely to find and remain on hosts that are growing in dense or nearly pure stands (Root, 1973). Associational resistance/Plant apparency - Crop plants grown as monocultures are more apparent to herbivorous insects than plants in diverse natural systems (Tahvanainen and Root, 1972). Trap cropping – the use of plants within a cropping area to attract oviposition away from the main crop (Banks and Ekbom, 1999). The ability of H. armigera to learn in regard to host seleciton (Cunningham et al., 1998a). The natural enemies hypothesis - generalist and specialist natural enemies are expected to be more abundant in diverse rather than simple systems (Root, 1973) A tall variety of sorghum (the forage variety Chopper) was tested for its ability to disrupt host location. Sorghum was planted around plots of tomatoes to act as a screen to disrupt visual cues for host location by Helicoverpa spp. No difference was found in egg numbers on tomatoes with or without sorghum companions. However, significantly higher numbers of Helicoverpa spp. larvae were found in the sorghum at flowering than in the tomatoes. This suggested the sorghum was acting as a trap crop, diverting oviposition away from the tomato crop. However, due to a short period of flowering and therefore peak attractiveness to H. armigera, sorghum was not considered to be a suitable companion plant for inclusion in commercial tomato production systems. A host preference study was conducted to determine the preferences of H. armigera for crop plants and possible companions in the hope of finding a suitable trap crop species. Tomatoes were shown to be a highly preferred plant making it difficult to find a compatible trap crop species that would be more attractive than the main crop. However, capsicums were less prefered and therefore more suitable for this type of experimentation. Marigolds were also found to be a highly preferred plant and formed the basis for further investigations into trap cropping systems. Field experiments were conducted in successive years in two geographical locations to assess the suitability of marigolds as a trap crop for capsicums in a field situation. However, in both years H. armigera incidence was extremely and unusually low leading to inconclusive results. A glasshouse experiment was performed to assess if the ratio of capsicum plants to marigolds plants had an effect on which species H. armigera would choose for oviposition. It was found that as more capsicum plants were introduced, moths became less likely to oviposit on the supposedly more preferred marigold plant. The diminishing attractiveness of a more preferred host in the presence of other hosts is a new observation of H. armigera behaviour. This result suggests that marigolds would be unlikely to be a successful trap crop in a field situation. The ability of H. armigera to learn in regard to host selection and the influence of this on host selection in the field was investigated. No evidence of learning was found. This was the first study investigating the effect of learning in a field situation; previously the behaviour had only been investigated in a laboratory situation (Cunningham, et al. 1998a). The ability of the Australian assassin bug, Pristhesancus plagipennis (Walker) (Hemiptera: Reduviidae) to predate H. armigera larvae on capsicum plants was investigated. This predator has been sucessfully been used for H. armigera management in cotton (Grundy, 2000b), but had not been investigated in horticultural crops. Significant reductions in larvae were achieved in treatments where assassin bugs were introduced. This predator warrants further investigation for inclusion in commercial integrated pest managment programs for capsicums. Pest repellent plants were also considered. Previous to this study, very little research work had been conducted on repellent plants for H. armigera. The herbs investigated were catnip (Nepta cataria), tansy (Tanacetum vulgare), basil (Ocium basilicum) and coriander (Coriander sativum). An olfactometer system was designed and built to test H. armigera moths’ responses to odours from the herbs. Glasshouse experiments were also conducted. No repellent activity was recorded with any of the herbs tested. The results of this study support the theory that Helicoverpa spp. employ a strategy of passive host selection as suggested by Firempong (1986). This means that all available plants in an area may be oviposited on with successful ovipostion and larval development leading to the future utilisation of a species as a host plant. The implication of this finding is that in-field trap cropping is unlikely to be a successful strategy for reducing H. armigera oviposition in tomato or capsicum production systems in Australia. In cotton crops in Australia, trap cropping is used as part of an area wide management strategy and aims to reduce the total Helicoverpa spp. population of a region. Such a strategy may also be successful in horticultural crops but only with the full participation of the growers of all crops that are attractive to H. armigera in a horticultural growing region. Due to the diverse nature of horticultural production this may be a difficult task.
45

Response of Helicoverpa armigera to agricultural environments diversified through companion planting.

Renee Herde Unknown Date (has links)
This study investigated the potential of companion planting as a strategy to aid in the management of Helicoverpa armigera in tomato and capsicum cropping systems. The investigaitons showed that a companion planting type system is unlikely to confer any benefits to the management of H. armigera in these crops. The project has contributed to the understanding of H. armigera host selection and how the pest responds to a diversified environment. Companion planting and vegetational diversity are strategies for reducing pest incidence on crops. Many theories have been devised to explain how introducing more than one plant species to a cropping space may reduce the incidence of a pest. Five ecological theories formed the basis of experiments in this study: The resource concentration hypothesis - Herbivores are more likely to find and remain on hosts that are growing in dense or nearly pure stands (Root, 1973). Associational resistance/Plant apparency - Crop plants grown as monocultures are more apparent to herbivorous insects than plants in diverse natural systems (Tahvanainen and Root, 1972). Trap cropping – the use of plants within a cropping area to attract oviposition away from the main crop (Banks and Ekbom, 1999). The ability of H. armigera to learn in regard to host seleciton (Cunningham et al., 1998a). The natural enemies hypothesis - generalist and specialist natural enemies are expected to be more abundant in diverse rather than simple systems (Root, 1973) A tall variety of sorghum (the forage variety Chopper) was tested for its ability to disrupt host location. Sorghum was planted around plots of tomatoes to act as a screen to disrupt visual cues for host location by Helicoverpa spp. No difference was found in egg numbers on tomatoes with or without sorghum companions. However, significantly higher numbers of Helicoverpa spp. larvae were found in the sorghum at flowering than in the tomatoes. This suggested the sorghum was acting as a trap crop, diverting oviposition away from the tomato crop. However, due to a short period of flowering and therefore peak attractiveness to H. armigera, sorghum was not considered to be a suitable companion plant for inclusion in commercial tomato production systems. A host preference study was conducted to determine the preferences of H. armigera for crop plants and possible companions in the hope of finding a suitable trap crop species. Tomatoes were shown to be a highly preferred plant making it difficult to find a compatible trap crop species that would be more attractive than the main crop. However, capsicums were less prefered and therefore more suitable for this type of experimentation. Marigolds were also found to be a highly preferred plant and formed the basis for further investigations into trap cropping systems. Field experiments were conducted in successive years in two geographical locations to assess the suitability of marigolds as a trap crop for capsicums in a field situation. However, in both years H. armigera incidence was extremely and unusually low leading to inconclusive results. A glasshouse experiment was performed to assess if the ratio of capsicum plants to marigolds plants had an effect on which species H. armigera would choose for oviposition. It was found that as more capsicum plants were introduced, moths became less likely to oviposit on the supposedly more preferred marigold plant. The diminishing attractiveness of a more preferred host in the presence of other hosts is a new observation of H. armigera behaviour. This result suggests that marigolds would be unlikely to be a successful trap crop in a field situation. The ability of H. armigera to learn in regard to host selection and the influence of this on host selection in the field was investigated. No evidence of learning was found. This was the first study investigating the effect of learning in a field situation; previously the behaviour had only been investigated in a laboratory situation (Cunningham, et al. 1998a). The ability of the Australian assassin bug, Pristhesancus plagipennis (Walker) (Hemiptera: Reduviidae) to predate H. armigera larvae on capsicum plants was investigated. This predator has been sucessfully been used for H. armigera management in cotton (Grundy, 2000b), but had not been investigated in horticultural crops. Significant reductions in larvae were achieved in treatments where assassin bugs were introduced. This predator warrants further investigation for inclusion in commercial integrated pest managment programs for capsicums. Pest repellent plants were also considered. Previous to this study, very little research work had been conducted on repellent plants for H. armigera. The herbs investigated were catnip (Nepta cataria), tansy (Tanacetum vulgare), basil (Ocium basilicum) and coriander (Coriander sativum). An olfactometer system was designed and built to test H. armigera moths’ responses to odours from the herbs. Glasshouse experiments were also conducted. No repellent activity was recorded with any of the herbs tested. The results of this study support the theory that Helicoverpa spp. employ a strategy of passive host selection as suggested by Firempong (1986). This means that all available plants in an area may be oviposited on with successful ovipostion and larval development leading to the future utilisation of a species as a host plant. The implication of this finding is that in-field trap cropping is unlikely to be a successful strategy for reducing H. armigera oviposition in tomato or capsicum production systems in Australia. In cotton crops in Australia, trap cropping is used as part of an area wide management strategy and aims to reduce the total Helicoverpa spp. population of a region. Such a strategy may also be successful in horticultural crops but only with the full participation of the growers of all crops that are attractive to H. armigera in a horticultural growing region. Due to the diverse nature of horticultural production this may be a difficult task.
46

Response of Helicoverpa armigera to agricultural environments diversified through companion planting.

Renee Herde Unknown Date (has links)
This study investigated the potential of companion planting as a strategy to aid in the management of Helicoverpa armigera in tomato and capsicum cropping systems. The investigaitons showed that a companion planting type system is unlikely to confer any benefits to the management of H. armigera in these crops. The project has contributed to the understanding of H. armigera host selection and how the pest responds to a diversified environment. Companion planting and vegetational diversity are strategies for reducing pest incidence on crops. Many theories have been devised to explain how introducing more than one plant species to a cropping space may reduce the incidence of a pest. Five ecological theories formed the basis of experiments in this study: The resource concentration hypothesis - Herbivores are more likely to find and remain on hosts that are growing in dense or nearly pure stands (Root, 1973). Associational resistance/Plant apparency - Crop plants grown as monocultures are more apparent to herbivorous insects than plants in diverse natural systems (Tahvanainen and Root, 1972). Trap cropping – the use of plants within a cropping area to attract oviposition away from the main crop (Banks and Ekbom, 1999). The ability of H. armigera to learn in regard to host seleciton (Cunningham et al., 1998a). The natural enemies hypothesis - generalist and specialist natural enemies are expected to be more abundant in diverse rather than simple systems (Root, 1973) A tall variety of sorghum (the forage variety Chopper) was tested for its ability to disrupt host location. Sorghum was planted around plots of tomatoes to act as a screen to disrupt visual cues for host location by Helicoverpa spp. No difference was found in egg numbers on tomatoes with or without sorghum companions. However, significantly higher numbers of Helicoverpa spp. larvae were found in the sorghum at flowering than in the tomatoes. This suggested the sorghum was acting as a trap crop, diverting oviposition away from the tomato crop. However, due to a short period of flowering and therefore peak attractiveness to H. armigera, sorghum was not considered to be a suitable companion plant for inclusion in commercial tomato production systems. A host preference study was conducted to determine the preferences of H. armigera for crop plants and possible companions in the hope of finding a suitable trap crop species. Tomatoes were shown to be a highly preferred plant making it difficult to find a compatible trap crop species that would be more attractive than the main crop. However, capsicums were less prefered and therefore more suitable for this type of experimentation. Marigolds were also found to be a highly preferred plant and formed the basis for further investigations into trap cropping systems. Field experiments were conducted in successive years in two geographical locations to assess the suitability of marigolds as a trap crop for capsicums in a field situation. However, in both years H. armigera incidence was extremely and unusually low leading to inconclusive results. A glasshouse experiment was performed to assess if the ratio of capsicum plants to marigolds plants had an effect on which species H. armigera would choose for oviposition. It was found that as more capsicum plants were introduced, moths became less likely to oviposit on the supposedly more preferred marigold plant. The diminishing attractiveness of a more preferred host in the presence of other hosts is a new observation of H. armigera behaviour. This result suggests that marigolds would be unlikely to be a successful trap crop in a field situation. The ability of H. armigera to learn in regard to host selection and the influence of this on host selection in the field was investigated. No evidence of learning was found. This was the first study investigating the effect of learning in a field situation; previously the behaviour had only been investigated in a laboratory situation (Cunningham, et al. 1998a). The ability of the Australian assassin bug, Pristhesancus plagipennis (Walker) (Hemiptera: Reduviidae) to predate H. armigera larvae on capsicum plants was investigated. This predator has been sucessfully been used for H. armigera management in cotton (Grundy, 2000b), but had not been investigated in horticultural crops. Significant reductions in larvae were achieved in treatments where assassin bugs were introduced. This predator warrants further investigation for inclusion in commercial integrated pest managment programs for capsicums. Pest repellent plants were also considered. Previous to this study, very little research work had been conducted on repellent plants for H. armigera. The herbs investigated were catnip (Nepta cataria), tansy (Tanacetum vulgare), basil (Ocium basilicum) and coriander (Coriander sativum). An olfactometer system was designed and built to test H. armigera moths’ responses to odours from the herbs. Glasshouse experiments were also conducted. No repellent activity was recorded with any of the herbs tested. The results of this study support the theory that Helicoverpa spp. employ a strategy of passive host selection as suggested by Firempong (1986). This means that all available plants in an area may be oviposited on with successful ovipostion and larval development leading to the future utilisation of a species as a host plant. The implication of this finding is that in-field trap cropping is unlikely to be a successful strategy for reducing H. armigera oviposition in tomato or capsicum production systems in Australia. In cotton crops in Australia, trap cropping is used as part of an area wide management strategy and aims to reduce the total Helicoverpa spp. population of a region. Such a strategy may also be successful in horticultural crops but only with the full participation of the growers of all crops that are attractive to H. armigera in a horticultural growing region. Due to the diverse nature of horticultural production this may be a difficult task.
47

How entomopathogenic endophytic fungi modulate plant-insect interactions

Aragón Rodríguez, Sandra Milena 08 July 2016 (has links)
No description available.
48

Studies On The Mechanism Of Resistance Against Pyrethroids In Helicoverpa Armigera: Molecular And Proteomic Approach

Konus, Metin 01 September 2012 (has links) (PDF)
Helicoverpa armigera is an insect, causes important economical losses in crops. To reduce this loss, chemical insecticides such as pyrethroids have been commonly used against H. armigera in farming areas all over the world. However, excess and continuous usages of them cause resistance development in H. armigera. Insects develop resistance against applied insecticides by following three main mechanisms / by reducing the amount of insecticide entering into the insect body, developing insensitivity of the insecticide effective site and increasing detoxification metabolism of insecticides such as increased metabolism of them in midgut tissue of H. armigera. Therefore, changes in differentially expressed midgut proteins were analysed at protein level with two-dimensional gel electrophoresis (2D-PAGE) and matrix-assisted laser desorption/ionization-time-of-flight-mass spectrometry (MALDI-TOF-MS) together with examine biochemical activity changes of certain detoxification enzymes such as esterases (EST) and glutathione S-transferases (GST). Moreover, transcriptional level analysis of certain genes from EST and GST systems together with cytochrome P450 monooxygenases (CYP450) system were done with quantitative real-time PCR method, too. According to the comparative proteome analysis, it was found that H. armigera field samples overcome pyrethroid stress mainly by increasing energy metabolism related proteins expressions such as ATP synthase, Vacuolar ATPase A and B and arginine kinase proteins. Furthermore, certain detoxification enzymes such as thioredoxin peroxidase and NADPH cytochrome P450 reductase were up-regulated in Mardin population, suggesting that they were actively participating in response to pyrethroid stress. NADPH cytochrome P450 reductase could play a role in detoxification of toxic pyrethroid metabolites such as 3-phenoxybenzaldehyde. However, while glutathione S-transferases (GSTs) were not found up-regulated in the comparative proteome analysis, biochemical assays (GST-CDNB, GST-DCNB and GST-PNBC) showed significant increases in enzyme activities in the Adana and in the Mardin field population, as compared to the susceptible strain. Furthermore, GST-DCNB and GST-PNBC activities showed significant increase in &Ccedil / anakkale population. As overcoming energy crisis may lead to an increase in oxidative stress, detoxification enzymes (GSTs and thioredoxin peroxidase) might be involved in pathways for eliminating toxic reactive oxygen species such as H2O2. Similarly, although esterases (EST) were not found as differentially expressed, biochemical assays for ESTs showed significant increases in enzymatic activities in the Adana and the Mardin field populations. Thus, ESTs are also proposed to be involved in developing resistance as an initiator of pyrethroid metabolism in H. armigera from Turkey. Quantitative real-time PCR results showed that while CYP9A14 gene expression was up-regulated in all analyzed field populations, CYP9A12 gene expression was up-regulated in both &Ccedil / anakkale and Mardin populations. CYP4S1 gene expression was also up-regulated only in Mardin field population. However, while CYP6B7 gene expression together with CYP9A12 and CYP4S1 genes expressions were down-regulated in Adana population, CYP6B7 gene expression was not significantly changed in both &Ccedil / anakkale and Mardin populations. In addition, GST, GSTX01 and ESTX018 gene expressions were not significantly changed in all field populations in comparison to susceptible population. Therefore, CYP9A14, CYP9A12 and CYP4S1 genes proposed to be involved in detoxification of toxic pyrethroid metabolites possibly through regulation of NADPH cytochrome P450 reductase. In conclusion, it is suggested that one of the main mechanisms of resistance development is increased energy metabolism in the midgut tissue of H. armigera which may be a general prerequisite for compensating the costs of energy-consuming detoxification processes.
49

The use of chlorpyrifos to control American bollworm (helicoverpa armigera) in oranges (citrus sinensis l.) in the Eastern Cape province of South Africa

Siyoko, Kotose Joseph 02 1900 (has links)
The objectives of this study were to establish the effectiveness of chlorpyrifos in suppressing H. armigera population in oranges and to determine the effect chlorpyrifos had on the health of farm pesticide operators. Experiments showed that by applying chlorpyrifos on orange trees, H. armigera larvae population was suppressed significantly. High fruit yields were realized from trees that were sprayed with chlorpyrifos. Visual observation of personnel involved in pesticide related duties, revealed that judicious use of pesticides was not practiced by farm workers in all three farms. Data analysis from questionnaires, health records and interviews proved that farm workers suffered from illnesses that were pesticide related. It was mainly those farm workers in the age group of 31 to 35 years who suffered the most from pesticide related illnesses. / Agriculture and Life Sciences / M. Sc. (Agriculture)
50

Syntheses and Characterization of Novel Materials for Efficacious Anticancer Drug Delivery and Selective Sensing of Bioanalytes

Moitra, Parikshit January 2015 (has links) (PDF)
The thesis entitled “Syntheses and Characterization of Novel Materials for Efficacious Anticancer Drug Delivery and Selective Sensing of Bioanalytes” encompasses the syntheses and characterization of various novel materials those are primarily used for efficacious pH-targeted chemotherapy, selective sensing and quantification of ATP inside a single living cell and also for specific sensing of female sex pheromone of certain agriculturally important pests. In recent era of cancer research, pH guided anticancer drug delivery is an emerging field by which not only the drug-sensitive, but also the drug-resistant cancer cell lines can be targeted efficiently. Scientists have paid lot of attentions to this area of research to design biocompatible, pH-responsive drug delivery vehicles, where most of the literatures are end up with complex, elaborated synthetic procedures and use of expensive chemicals. There are only a few reports in the literature on small molecule based drug delivery vehicles, which is not well explored. Herein some of the biocompatible, pH-sensitive lipid and short peptide sequences are synthesized in easy and short synthetic procedures and successfully tested for their efficacious anticancer drug delivery properties by various biophysical and biological techniques. A pH and reduction dual bio-responsive short peptide sequences are also generated in simple steps for the same cause. The formation of different nanostructures from the self-assembly of these short peptides is probed from high level of theoretical calculations and ultimately a well known chemotherapeutic drug, doxorubicin, has been delivered efficiently both to the drug-sensitive and drug-resistant cancer cell lines. In a particular case, in vivo study has also been performed to establish the drug delivery efficacy of those serum-stable vehicles that led to proficient reduction of tumour volume as compared to the free drug. On the other hand, a few of the molecules are synthesized and characterized by various analytical means for the selective sensing and quantification of adenosine 5’-triphosphate (ATP) inside a single living cell. Unique surface functionalized templates are also fabricated over MEMS devices for specific sensing of female sex pheromone of Helicoverpa armigera and Bactocera oleae pest in an agricultural field to detect the early pest infestation. Toward this end, an extensive study on the design, syntheses and characterization of different novel materials is presented below.

Page generated in 0.4652 seconds