• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigation sismique du domaine avant-arc Égéen du segment Sud-Ouest de la zone de subduction Hellénique / Seismic investigation of the forearc domain of the southwestern segment of the Hellenic subduction zone

Vitard, Clément 01 December 2016 (has links)
La zone de subduction Hellénique, en Méditerranée orientale, est caractérisée par le taux de sismicité le plus important d’Europe. Des séismes de forte magnitude (Mw 7,5-8) ont eu lieu le long du segment Sud-Ouest de la zone de subduction Hellénique, au large du Péloponnèse, au cours du 19ème et 20ème siècle. Ce segment de 400 km de long a également été le lieu de nucléation du plus important séisme d’Europe, en 365 ap J.C, avec une magnitude supérieure à 8, ayant entraîné un tsunami dévastateur. Deux principaux modèles scientifiques s’opposent sur la question du couplage sismique de l’interface de subduction, allant d’un couplage sismique total au niveau de l’interface, à l’hypothèse opposée d’un couplage quasi inexistant. Cependant, ces modèles opposés considèrent des géométries approximatives et parfois extrêmes, fautes de contraintes disponibles sur la structure et la géométrie de l’interplaque sous l’avant-arc dans cette zone. La localisation de la faille responsable du séisme de 365 ap J.C est également débattue, en l’absence de données géophysiques permettant d’identifier les interfaces potentiellement responsables de cet événement dévastateur. La faille de méga-chevauchement et le domaine avant-arc du segment Sud-Ouest de l’arc Hellénique ont été l’objet d’étude de la campagne océanographique Ulysse en Novembre 2012 afin de déterminer la géométrie des structures et unités majeures dans cette portion de la zone de subduction, mais également d’apporter un éclairage sur la tectonique récente qui affecte cette zone / The Hellenic subduction zone, in the eastern part of the Mediterranean sea, is characterized by the highest rate of current seismicity in Europe. In the southwestern segment, several earthquakes of large magnitude (Mw 7,5-8) occured a the turn of the 19th to 20th century. This segment of 400 km long, has also been the nucleation site of the largest historical earthquake in Europe, named the 365 AD earthquake, with a magnitude of Mw 8. This event generates a devastating tsunami, which spread along the Adriactic Sea and in the Nile Delta region. Two main models differ about the interplate seismic coupling question in this region, from a total seismic coupling at the interplate, at the opposite assumption of a very weak seismic coupling. However, these opposing models consider an approximate geometry, mostly because of the lack of information available on the geometry and the localization of the interplate in this region of the forearc domain. The localization of the fault responsible of the 365 AD event is also debated, because, there is no available data who provides imagery of the interfaces potentially responsible of this devastating earthquake. The megathrust fault and the forearc domain of the southwestern segment of the Hellenic subduction zone has been the target of the Ulysse marine survey in November 2012. The aim of this survey was to provide information of the structural geometry of the main units in this part of the subduction zone, and to bring information on the recent tectonic activity in this region
2

Cinématique et tectonique active de l'Ouest de la Grèce dans le cadre géodynamique de la Méditerranée Centrale et Orientale / Kinematics and active tectonics of Western Greece in the framework of Central and Eastern Mediterranean geodynamics

Pérouse, Eugénie 16 May 2013 (has links)
La Méditerranée se situe dans une zone de convergence lente entre les plaques Eurasienne et Africaine (~5 mm/an), où des restes d'anciens bassins Téthysiens sont progressivement consommés par le retrait rapide de zones de subductions (~20-30 mm/an sur la zone de subduction Hellénique). En Méditerranée Orientale, une transition collision-subduction se produit dans l'Ouest de la Grèce (collision de la Plateforme Apulienne au nord et subduction Hellénique au sud), pratiquement à l’extrémité du Golfe de Corinthe et dans une région de propagation potentielle de la faille Nord Anatolienne. Afin d'étudier la cinématique actuelle de l'Ouest de la Grèce, nous adoptons une approche multi-échelle de la déformation:(1) Une modélisation grande échelle du champ de vitesses crustale horizontales mesuré par géodésie est effectuée afin de contraindre la cinématique au voisinage de l'Ouest de la Grèce, à la fois à terre et en mer. Un résultat majeur est qu'une zone d'extension distribuée N-S s'étendant de la Bulgarie à l'Est du Golfe de Corinthe a pour conséquence de désactiver la terminaison Ouest de la faille Nord Anatolienne dans le nord de la Mer Egée. Cette extension d’échelle régionale pourrait être causée par le retrait du slab Hellénique. (2) Une étude tectonique active permet d'établir une cartographie précise des failles actives de la région, leur chronologie relative et une estimation de leur vitesse de déplacement. Le demi-graben actif du Golfe Amvrakikos et la faille active N155° de Katouna-Stamna, qui constituent les frontières Nord et Est d'un bloc Iles Ioniennes-Akarnanie (IAB), sont caractérisés par des vitesses géologiques d'au moins ~ 4 mm/an et des vitesses mesurées par GPS de l'ordre de ~10 mm/an. Ce bloc IAB est limité à l'Ouest par la faille transformante de Céphalonie et semble se comporter de manière rigide.(3) Une fois les frontières du bloc IAB connues, nous montrons que le champ de vitesse GPS mesuré dans la région peut être entièrement expliqué par des effets transitoires de blocage élastique associés aux failles bordières de ce bloc. Le couplage sur l'interface de subduction n'a pas d'expression en surface, ce qui suggère qu'il doit être faible. Enfin, nous justifions l'existence d'un point triple de type Rift-Faille-Faille à la terminaison Ouest du Golfe du Corinthe. / The Mediterranean is a diffuse plate boundary zone between the slowly converging Eurasian and African plates (~ 5mm/yr), where remnants of old Tethyan basins are progressively consumed by fast trench retreat (~20-30 mm/yr at the Hellenic subduction zone). In Eastern Mediterranean, a collision-subduction transition occurs in Western Greece (collision of the Apulian Platform to the north and Hellenic subduction zone to the south), close to the westward Corinth Rift termination and in a region that may be potentially affected by the westward propagation of the North Anatolian Fault. We used a multi-scale deformation approach to investigate Western Greece active kinematics:(1) We run a large scale model of horizontal crustal velocities measured by GPS to constrain the kinematic boundary conditions of Western Greece, both onshore and offshore. A major result is the occurrence of distributed N-S extension spreading from Bulgaria to the Eastern Corinth rift, resulting in de-activation of the western termination of the North Anatolian Fault in North Aegean Sea. This large scale extension could be associated to the retreat of the Hellenic slab.(2) An active tectonics study has been performed to provide an accurate mapping of active faults in the region, to constrain their relative chronology and to estimate their geological slip-rate. The Amvrakikos Gulf active half-graben and the N155° active Katouna-Stamna Fault, which form the northern and eastern boundaries of a Ionian Island-Akarnania block (IAB), have geological slip rates of at least ~ 4mm/yr and GPS slip-rates of ~ 10 mm/yr. The IAB is bounded to the west by the Kefalonia transform fault and appears to behave rigidly.(3) Once the IAB boundaries are defined, we show that the velocity field measured by GPS in the region can be totally accounted by transient elastic loading along the IAB bordering faults. Subduction interface coupling has no surface expression, suggesting low coupling. Finally, we justify the occurrence of a Rift-Fault-Fault triple junction at the western termination of the Corinth Rift.

Page generated in 0.2234 seconds