• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 7
  • 7
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Molecular mechanisms of bio-catalysis of heme extraction from hemoglobin

Sakipov, Serzhan, Rafikova, Olga, Kurnikova, Maria G., Rafikov, Ruslan 04 1900 (has links)
Red blood cell hemolysis in sickle cell disease (SCD) releases free hemoglobin. Extracellular hemoglobin and its degradation products, free heme and iron, are highly toxic due to oxidative stress induction and decrease in nitric oxide availability. We propose an approach that helps to eliminate extracellular hemoglobin toxicity in SCD by employing a bacterial protein system that evolved to extract heme from extracellular hemoglobin. NEAr heme Transporter (NEAT) domains from iron-regulated surface determinant proteins from Staphylococcus aureus specifically bind free heme as well as facilitate its extraction from hemoglobin. We demonstrate that a purified NEAT domain fused with human haptoglobin beta-chain is able to remove heme from hemoglobin and reduce heme content and peroxidase activity of hemoglobin. We further use molecular dynamics (MD) simulations to resolve molecular pathway of heme transfer from hemoglobin to NEAT, and to elucidate molecular mechanism of such heme transferring process. Our study is the first of its kind, in which simulations are employed to characterize the process of heme leaving hemoglobin and subsequent rebinding with a NEAT domain. Our MD results highlight important amino acid residues that facilitate heme transfer and will guide further studies for the selection of best NEAT candidate to attenuate free hemoglobin toxicity.
2

The Influence of the Proximal Thiolate Ligand and Hydrogen Bond Network of the Proximal Helix on the Structural and Biochemical Properties of Chloroperoxidase

Shersher, Elena 01 March 2016 (has links)
Chloroperoxidase (CPO) from Caldariomyces fumago is a versatile heme enzyme with great potential for environmental and pharmaceutical applications. It catalyzes a plethora of reactions including halogenation, dismutation, epoxidation, and oxidation. The diverse catalytic capabilities of CPO have long been attributed to the protein’s distinct active site that combines structural features of peroxidases and cytochromes P450. Particularly, the role of the axial thiolate ligand in CPO catalysis has been much debated. Furthermore, no data are available on the role of hydrogen bonding between Arg 26-Asn 37 and Ala 27-Asn 33 of the proximal helix in defining the structural and catalytic properties of CPO. In order to investigate the influence of the proximal thiolate and the proximal hydrogen bond network on the structural and biochemical properties of CPO, several mutant CPOs were constructed and characterized using various spectroscopic techniques and enzymatic assays. Cysteine 29, which coordinates to the heme, was replaced with a His (C29H) to mimic the proximal ligation of classical peroxidases. The UV-Vis spectrum of the carbon monoxide complex of ferrous C29H mutant remained essentially identical to that of wild type (WT) CPO and P450 although the ferric state of the variant enzyme showed a spectral pattern reminiscent of a classical histidine ligated heme peroxidase. Histidine ligation was further confirmed by paramagnetic NMR spectroscopy. Contrary to a previous report, the specific chlorination activity of C29H was essentially abolished (less than 1% of that of WT CPO) but the epoxidation and peroxidation activities were enhanced 10-fold and 55-fold, respectively. These findings demonstrate for the first time that the heme ligand, Cys 29 in CPO, is not a prerequisite for CPO’s unique P450-like spectroscopic signatures but is constitutive for the protein’s versatile catalytic activities. Arginine 26 and Asparagine 33 in the proximal heme pocket were replaced with Ala (R26A, N33A, and R26A/N33A) to disrupt hydrogen bonding. Tertiary structures and heme environments of R26A, N33A, and R26A/N33A differed from those of WT CPO as determined by CD spectroscopy. The specific chlorination and dismutation activities of all mutants were almost abolished but the peroxidation and epoxidation rates were increased. These results show that the proximal hydrogen bond network plays an important role in maintaining the structure and catalytic diversity of CPO.
3

Thermodynamics and Kinetics of Ligand Photodissociation in Heme Proteins and Formation of DNA i-Motif

Butcher, David S 01 March 2017 (has links)
Heme proteins carry out a diverse array of functions in vivo while maintaining a well-conserved 3-over-3 α-helical structure. Human hemoglobin (Hb) is well-known for its oxygen transport function. Type 1 non-symbiotic hemoglobins (nsHb1) in plants and bacterial flavohemoglobins (fHb) from a variety of bacterial species have been predicted to carry out a nitric oxide dioxygenase function. In nsHb1 and fHb this function has been linked to protection from nitrosative stress. Herein, I combine photoacoustic calorimetry (PAC), transient absorption spectroscopy (TA), and classical molecular dynamics (cMD) simulations to characterize molecular mechanism of diatomic ligand interactions with a hexa-coordinate globin from plant (rice hemoglobin), bacterial flavohemoglobins and human hemoglobin. In rice type 1 non-symbiotic hemoglobin (rHb1), the dynamics and energetics of structural changes associated with ligand photodissociation is strongly impacted by solvent and temperature, namely CO escape from the protein matrix is slower at pH = 6.0 compare to neutral pH (ns) due to the CD loop reorganization which forms a pathway for ligand escape. In human hemoglobin, exogenous allosteric effectors modulate energetics of conformational changes associated with the CO and O2 escape although the effectors impact on rate constants for ligand association is small. The conformational dynamics associated with ligand photorelease from fHbs from Cupriavidus necator (FHP) and Staphylococcus aureus (HMPSa) are strongly modulated by the presence of azole drugs indicating that drug association modulates structural properties of the heme binding pocket. In addition, we carried out a study of the formation of the DNA intercalated motif (i-motif). The formation of the structure is strongly favored at acidic pH; therefore, PAC was combined with a 2-nitrobenzaldehyde pH-jump to probe formation of the i-motif on fast timescales. i-Motif folding is two-step process with the initial protonation of cytosine residues being endothermic with ΔHfast=8.5 ± 7.0 kcal mol-1 and ΔVfast=10.4 ± 1.6 mL mol-1 and subsequent nucleation/i-motif folding (τ = 140 ns) with ΔHslow=-51.5 ± 4.8 kcal mol-1 and ΔVslow=-6.6 ± 0.9 mL mol-1. The above results indicate that PAC can be employed to study diverse biochemical reactions such as DNA folding, drug binding and ligand photorelease from proteins.
4

Investigating the Role of the Proximal Cysteine Hydrogen Bonding Network and Distal Pocket in Chloroperoxidase

Kwong Lam, Elwood 06 November 2018 (has links)
Chloroperoxidase (CPO) is one of the most versatile heme enzyme isolated from the marine fungus, Caldariomyces fumago. Functionally, CPO can catalyze four types of reactions: peroxidation (peroxidase-like), dismutation (catalase-like), halogenation (halogenase-like), and peroxygenation (P450-like). Structurally, CPO has a distal and proximal pockets that can be best described as a hybrid of classical peroxidase and P450s. As a heme-thiolate protein, CPO contains the conserved proximal Pro28-Cys29-Pro30 stretch found in other members of the family. However, the structural and functional roles of these proline residues remain poorly understood. Site-directed mutagenesis was undertaken to generates three CPO mutants, P28A-, P30A-, P28A/P30A-CPO. The replacement of the rigid proline with a more flexible alanine residue, freed up the back bone amide for the formation of additional amide-sulfur hydrogen bond, allowing the investigation of the importance of these residues in CPO catalysis. The three CPO mutants displayed dramatic difference in ligand binding affinity and catalytic activities relative to WT-CPO. Any mutations on the proline resides within the proximal loop eliminated the halogenation and dismutation activities but enhanced the vii epoxidation and peroxidation activities by 4-14 fold. As the binding affinity for cyanide, the CPO mutants displayed significantly higher dissociation constant relative to WT-CPO. Our results revealed that Pro28 and Pro30 play important roles in maintaining the versatility of CPO. As a versatile enzyme, CPO has great application potential in pharmaceutical and chemical industry due to its ability to catalyze the formation of chiral epoxides. Phe103 and Phe186 located on the distal pocket have been proposed to guard the access of substrates to the ferryl oxygen of the heme center. The interactions of these two phenylalanine residues restricted the size of substrates and regulates CPO’s enantioselectivity. F186A- and F103A/F186A-CPO were generated and characterized where the rate of peroxidation and epoxidation were significantly enhanced at the expense of halogenation and dismutation activities. Our results demonstrated that Phe186 played a subtler role relative to Phe103 in terms of substrate specificity and product enantioselectivity of CPO.
5

HcpR of Porphyromonas gingivalis utilizes heme to bind NO

Belvin, Benjamin 24 April 2014 (has links)
The obligate anaerobe Porphyromonas gingivalis is the etiological agent responsible for periodontal disease. It must withstand high levels of reactive nitrogen species in the oral cavity generated by the host and other oral flora. The mechanisms allowing for protection against such stress remain poorly understand. HcpR is an FNR-CRP family regulator that has been implicated in regulation of the nitrosative stress response. In this study we characterize the biochemical properties of HcpR. It is a homo-dimer that is composed of 3 domains – a heme-binding domain, dimerization helix, and a DNA-binding domain. Our studies show that HcpR binds the heme cofactor. UV-Vis and Raman spectroscopy reveal that the bound heme is capable of binding the diatomic gas molecule Nitric Oxide (NO)-a source of nitrosative stress. Binding of NO causes a change in the oxidation state of the iron. SAXS reveals the protein bears a structural resemblance to homology models generated from an ortholog. Promoterr studies reveal that mechanisms P. gingivalis-HcpR uses to modulate expression are novel and different than those found in E. coli and P. aeruginosa.
6

Nitrosative stress sensing in Porphyromonas gingivalis: structure and function of the heme binding transcriptional regulator HcpR

Belvin, Benjamin R 01 January 2017 (has links)
Porphyromonas gingivalis, a Gram negative anaerobe implicated in the progression of periodontal disease, is capable of surviving and causing infection despite high levels of reactive nitrogen species found in the oral cavity due to its efficient nitrosative stress response. HcpR is an important sensor-regulator that plays a vital step in the initiation of the nitrosative stress response in many Gram negative anaerobic bacteria. We employ a combination of X-ray crystallography, SAXS, resonance Raman spectroscopy, UV-Vis spectroscopy, and molecular biology techniques to better understand this key regulator. Knockout of the hcpR gene in W83 P. gingivalis results in the inability of the bacteria to grow in physiological concentrations of nitrite and complementation of hcpR using the novel plasmid Pg108 rescues this phenotype. HcpR causes a drastic, dose dependent upregulation of PG0893, a gene coding for a putative NO reductase, when exposed to nitrite or nitric oxide. Full transcriptome sequencing reveals that hcp is the only significantly upregulated gene when P. gingivalis is exposed to nitrite and knockout of hcp resulted in a phenotype that is similar to that of the hcpR deficient strain. HcpR directly regulates the expression of hcp via direct binding to an inverted repeat sequence in the promoter region of the hcp gene. We present a 2.6 Å crystal structure of the N-terminal sensing domain of HcpR and show that it is FNR-CRP regulator. A putative hydrophobic heme binding pocket was identified in the junction between the N-terminal domain and the dimerization helix. Mutation of two methionine residues (Met68 and Met145) in this pocket abrogates activation of HcpR thus verifying the binding site. Heme bound to HcpR exhibits heme iron as a hexa-coordinate system in the absence of nitric oxide (NO) and upon nitrosylation transitions to a penta-coordinated system. Finally, Small Angle X-ray Scattering experiments of the full length HcpR reveal that the C-terminal DNA binding domain of HcpR has a high degree of interdomain flexibility.
7

Investigating the Role of Subunit III in the Structure and Function of Rhodobacter Sphaeroides Cytochrome C Oxidase

Geyer, R. Ryan 31 July 2007 (has links)
No description available.

Page generated in 0.0651 seconds