• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Proteomic Characterization of Hemogen in Erythropoiesis

Somasundaram, Brinda 31 October 2012 (has links)
Hemogen (Hemgn) is reported as a tissue specific transcriptional regulator in testis as well as hematopoietic tissues. It is known that Hemgn positively regulates erythroid differentiation; however,the underlying molecular mechanism is not well understood. In the current study, using proteomic approach in combination with other molecular biology tools,we have attempted to decipher the role of Hemgn in differentiating Murine erythroblast leukemia (MEL) cells as a model system. Our study reveals that Hemgn predominantly interacts with transcriptional regulators, chromatin modifiers and histones. Furthermore, using Chromatin Immunoprecipitation and knockdown approach, we have demonstrated that Hemgn is recruited to the b-globin locus, which is known to be activated during erythroid differentiation. Based on the results,we speculate that Hemgn acts as a tissue specific histone chaperone that regulates transcription during erythroid differentiation.
2

Proteomic Characterization of Hemogen in Erythropoiesis

Somasundaram, Brinda January 2012 (has links)
Hemogen (Hemgn) is reported as a tissue specific transcriptional regulator in testis as well as hematopoietic tissues. It is known that Hemgn positively regulates erythroid differentiation; however,the underlying molecular mechanism is not well understood. In the current study, using proteomic approach in combination with other molecular biology tools,we have attempted to decipher the role of Hemgn in differentiating Murine erythroblast leukemia (MEL) cells as a model system. Our study reveals that Hemgn predominantly interacts with transcriptional regulators, chromatin modifiers and histones. Furthermore, using Chromatin Immunoprecipitation and knockdown approach, we have demonstrated that Hemgn is recruited to the b-globin locus, which is known to be activated during erythroid differentiation. Based on the results,we speculate that Hemgn acts as a tissue specific histone chaperone that regulates transcription during erythroid differentiation.

Page generated in 0.2393 seconds