Spelling suggestions: "subject:"hemiacetal estes"" "subject:"hemiacetals estes""
1 |
Lipase catalysed reactions of terpenoids : formation of hemiacetal esters : resolution of cryptone and its transformation to cadinenesIsaksson, Dan January 2006 (has links)
During attempted enzyme-catalysed resolution of sterically hindered secondary alcohols, hemiacetals and their esters were unexpectedly detected. Hemiacetal esters are reactive compounds that decompose to alcohol, aldehyde and acid under ordinary work-up conditions i.e. in contact with water, acid, or silica gel. Thus, the presence of these side products might decrease the enantiomeric excess of the residual alcohol after workup of a lipase-catalysed resolution. The formation of these hemiacetal esters were further studied using both terpenoid and non-terpenoid substrate alcohols, various acyl donors, and lipases. The prerequisite for their formation is the presence of a sterically hindered substrate alcohol, an aldehyde or an aldehyde releasing acyl donor, and a lipase (PCL-L6, PCL-PS and CAL-B). Enantioselective synthesis of (S)- and (R)-cryptone was performed via a ring closing metathesis (RCM) of (S)- and (R)-6-isopropyl-1,7-octadien-3-one. The stereochemistry was induced by using pseudoephedrine as chiral auxiliary in an alkylation reaction which provided a chiral octadienone. Problems with removal of the RCM-catalyst resulted in low yields and low enantiomeric purity. In an alternative approach, racemic cryptone was subjected to conjugate addition with thiophenol followed by reduction to the corresponding alcohol. Lipase-catalysed resolution of this alcohol yielded, after oxidation and elimination, (R)- and (S)- cryptone with 76% and 98% ee, respectively. Marine fouling of immersed objects is a serious problem. Many coatings contain effective antifouling compounds having the drawback of being toxic to the marine environment. The marine natural product 10-isocyano-4-cadinene is a potentially non-toxic antifouling agent against the barnacle Balanus amphitrite and therefore an interesting target for organic synthesis. Cryptone was used as a starting material in attempted syntheses of this compound and other similar model compounds. / QC 20100901
|
2 |
Biotransformations of Turpentine Constituents : Oxygenation and EsterificationLindmark-Henriksson, Marica January 2003 (has links)
This thesis describes methods to obtain valueaddedcompounds from TMP-turpentine obtained from the spruce, Piceaabies. The methodology focuses on biotransformations using twoapproaches: an oxygenation approach (i.e. oxygenation ofterpene hydrocarbons by cell cultures) and an esterificationapproach (i.e. lipase-catalysed transesterification of vinylacetate with terpene alcohols, and a further fractionation ofthe TMP-turpentine). The main constituents of the turpentine, a-pinene, b-pineneand limonene, were subjected to a P. abies suspension culture.Allylic oxidation formed the major products for α-pineneand β-pinene, which were further oxidised to theirrespective aldehyde or ketone. One of the minor products froma-pinene, cis-verbenol, was not only transformed into verbenonebut also isomerised to trans-verbenol. Limonene gavelimonene-(1,2)-epoxide as the major product. Fractionation of monoterpenes is accomplished throughphysical separation methods, chromatography and distillation,and lipase-catalysed transesterification of vinyl acetate withterpene alcohols. The esters of myrtenol and trans-pinocarveolwere separated from the more slowly reacting alcohols such asborneol and carveol by use of a combination of the Mucor mieheilipase and Candida antarctica lipase A as catalysts.Furthermore, the non-reacting tertiary terpene alcohols wereseparated from the reacting alcohols in a single step byCandida antarctica lipase A. Lipase-catalysed (Candida antarctica lipase B andPseudomonas cepacia lipase) transesterification of vinylacetate with sterically hindered secondary alcoholsunexpectedly yielded hemiacetals or hemiacetal esters. Thereaction conditions required to obtain these side products havebeen studied. <b>Keywords:</b>Picea abies, Pinaceae, Essential oilscomposition; Terpene alcohol; Hemiacetal; Hemiacetal ester,TMP-turpentine; Monoterpene; α-Pinene; β-Pinene;Limonene; Verbenol; Pinocarveol; Borneol; Myrtenol; Suspensioncell culture; Biotransformation; Lipase-catalysed; Oxidation;Allylic oxidation; Transesterification; Autoxidation;Separation.
|
3 |
Biotransformations of Turpentine Constituents : Oxygenation and EsterificationLindmark-Henriksson, Marica January 2003 (has links)
<p>This thesis describes methods to obtain valueaddedcompounds from TMP-turpentine obtained from the spruce, Piceaabies. The methodology focuses on biotransformations using twoapproaches: an oxygenation approach (i.e. oxygenation ofterpene hydrocarbons by cell cultures) and an esterificationapproach (i.e. lipase-catalysed transesterification of vinylacetate with terpene alcohols, and a further fractionation ofthe TMP-turpentine).</p><p>The main constituents of the turpentine, a-pinene, b-pineneand limonene, were subjected to a P. abies suspension culture.Allylic oxidation formed the major products for α-pineneand β-pinene, which were further oxidised to theirrespective aldehyde or ketone. One of the minor products froma-pinene, cis-verbenol, was not only transformed into verbenonebut also isomerised to trans-verbenol. Limonene gavelimonene-(1,2)-epoxide as the major product.</p><p>Fractionation of monoterpenes is accomplished throughphysical separation methods, chromatography and distillation,and lipase-catalysed transesterification of vinyl acetate withterpene alcohols. The esters of myrtenol and trans-pinocarveolwere separated from the more slowly reacting alcohols such asborneol and carveol by use of a combination of the Mucor mieheilipase and Candida antarctica lipase A as catalysts.Furthermore, the non-reacting tertiary terpene alcohols wereseparated from the reacting alcohols in a single step byCandida antarctica lipase A.</p><p>Lipase-catalysed (Candida antarctica lipase B andPseudomonas cepacia lipase) transesterification of vinylacetate with sterically hindered secondary alcoholsunexpectedly yielded hemiacetals or hemiacetal esters. Thereaction conditions required to obtain these side products havebeen studied.</p><p><b>Keywords:</b>Picea abies, Pinaceae, Essential oilscomposition; Terpene alcohol; Hemiacetal; Hemiacetal ester,TMP-turpentine; Monoterpene; α-Pinene; β-Pinene;Limonene; Verbenol; Pinocarveol; Borneol; Myrtenol; Suspensioncell culture; Biotransformation; Lipase-catalysed; Oxidation;Allylic oxidation; Transesterification; Autoxidation;Separation.</p>
|
Page generated in 0.2208 seconds