• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 1
  • Tagged with
  • 12
  • 12
  • 12
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Heparan sulfate biosynthesis - clues from knockout mice /

Ledin, Johan, January 2004 (has links)
Diss. (sammanfattning) Uppsala : Univ., 2004. / Härtill 4 uppsatser.
2

The uterine proteoglycan expression in pregnancy and labor /

Hjelm Cluff, Ann, January 2004 (has links)
Diss. (sammanfattning) Stockholm : Karol inst., 2004. / Härtill 4 uppsatser.
3

The generation of monoclonal antibodies to investigate perlecan turnover in cells and tissues

Ma, Jin, Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW January 2008 (has links)
Perlecan is an important basement membrane heparan sulfate (HS) proteoglycan that is essential for various cell signaling events involved in tissue development. Heparanase is a lysosomal enzyme involved in the turnover of HS. This project aimed to assist in researching the structure of HS on perlecan and how this structure changes with tissue development. This will be achieved by generating monoclonal antibodies that have an altered affinity for perlecan after heparanase treatment. Recombinant perlecan domain I was characterized by ELISA and western blotting and used as the antigen for two fusions. The first fusion was focused on the production of IgM the common subtype of anti-glycosaminoglycans antibodies. However, no clones were produced, which may have been due to the lack of feeder layers. In order to address this problem, the fibroblast cell line MRC-5 was used as a feeder layer in the second fusion. From this fusion, we obtained 216 positive cultures, which were screened against full length perlecan from endothelial cells. Of these, 26 cultures were tested against heparanase treated perlecan, and then 2 cultures were chosen for subcloning based on the different immunoreactivity between enzyme treated and nontreated perlecan. From the 2 chosen cultures, 13 sub clones were derived and 10 of them were adapted into a serum free culture environment. The 10 monoclonal antibodies displayed strong immunoreactivity with full length perlecan in ELISA and Western Blotting. When they were used as primary antibodies in Immunocytochemistry, they were able to recognize the native perlecan deposited by human chondrocytes. When the cells were incubated with heparanase, antibody 5D7-2E4 and 13E9-3G5 showed an increase in immunoreactivity while antibody 13E9-3B3 gave a decrease. These three antibodies will be the potential tools used in the future to study perlecan turnover in different cells and tissue. The remaining seven antibodies will also be very useful in the research of perlecan as they have been shown to bind to the protein core. In the future, it will be worth subcloning some of the frozen stored stocks of uncloned hybridomas, where there are potential opportunities to select antibodies, which will react with the carbohydrate chains on perlecan.
4

The generation of monoclonal antibodies to investigate perlecan turnover in cells and tissues

Ma, Jin, Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW January 2008 (has links)
Perlecan is an important basement membrane heparan sulfate (HS) proteoglycan that is essential for various cell signaling events involved in tissue development. Heparanase is a lysosomal enzyme involved in the turnover of HS. This project aimed to assist in researching the structure of HS on perlecan and how this structure changes with tissue development. This will be achieved by generating monoclonal antibodies that have an altered affinity for perlecan after heparanase treatment. Recombinant perlecan domain I was characterized by ELISA and western blotting and used as the antigen for two fusions. The first fusion was focused on the production of IgM the common subtype of anti-glycosaminoglycans antibodies. However, no clones were produced, which may have been due to the lack of feeder layers. In order to address this problem, the fibroblast cell line MRC-5 was used as a feeder layer in the second fusion. From this fusion, we obtained 216 positive cultures, which were screened against full length perlecan from endothelial cells. Of these, 26 cultures were tested against heparanase treated perlecan, and then 2 cultures were chosen for subcloning based on the different immunoreactivity between enzyme treated and nontreated perlecan. From the 2 chosen cultures, 13 sub clones were derived and 10 of them were adapted into a serum free culture environment. The 10 monoclonal antibodies displayed strong immunoreactivity with full length perlecan in ELISA and Western Blotting. When they were used as primary antibodies in Immunocytochemistry, they were able to recognize the native perlecan deposited by human chondrocytes. When the cells were incubated with heparanase, antibody 5D7-2E4 and 13E9-3G5 showed an increase in immunoreactivity while antibody 13E9-3B3 gave a decrease. These three antibodies will be the potential tools used in the future to study perlecan turnover in different cells and tissue. The remaining seven antibodies will also be very useful in the research of perlecan as they have been shown to bind to the protein core. In the future, it will be worth subcloning some of the frozen stored stocks of uncloned hybridomas, where there are potential opportunities to select antibodies, which will react with the carbohydrate chains on perlecan.
5

N-unsubstituted glucosamine residues in heparan sulfate and their potential relation to Alzheimer's disease /

Westling, Camilla, January 2003 (has links)
Diss. (sammanfattning) Uppsala : Univ., 2004. / Härtill 4 uppsatser.
6

Functions of heparan sulfate during mouse development : studies of mice with genetically altered heparan sulfate biosynthesis /

Ringvall, Maria, January 2004 (has links)
Diss. (sammanfattning) Uppsala : Univ., 2004. / Härtill 4 uppsatser.
7

Perlecan in vascular disease /

Tran, Phan Kiet, January 2005 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2005. / Härtill 5 uppsatser.
8

Regulatory Effect of Elastin Based Biomaterial on Cellular Behavior and Its Application on Wound Repair and Regeneration

Yuan, Yuan 17 March 2016 (has links)
Elastin-like peptides (ELPs) are stimulus-responsive protein-based polymers which are attractive material for biomedical research due to their biocompatibility and unique properties. The physical properties of ELPs are dependent on the chain length and the chosen amino acid at the guest residue position. This imparts unlimited flexibility in designing ELP based biomaterials with the desired physical properties. We have shown that in addition to their physical properties, ELPs have biological activities that are conducive to tissue regeneration. Specifically, we found that ELPs induce fibroblast proliferation via cell surface heparan sulfate proteoglycans (HSPG). Furthermore, our data suggests that ELP based materials with differential proliferative potential can be designed by controlling the interaction of ELPs with HSPGs by incorporating either hydrophobic or positively charged residues within the ELP sequence. Fibroblast proliferation is important for granulation tissue formation which is important in chronic wounds as well as in healing of other tissues. The customizable biological activity of ELPs coupled with their unique physical properties will enable us to design novel, sustainable and cost effective therapies for different tissue regeneration applications. ELPs can be genetically fused to biologically active peptides or proteins. These fusions can be expressed and readily purified since they maintain the phase transitioning property of the fused ELP domain. Moreover, depending on the ELP sequence chosen the chimeric fusion sequences can self-assemble into unique structures such as nanoparticles. These structures can then be applied to the injury site where they not only provide unique topographical cues or structural support but also act as delivery vehicles for the fused bioactive protein. We developed a multifunctional nanoparticle that is comprised of PMP-D2-ELP fusion protein and different functional peptide ELP fusion proteins to preserve the bioactivity of the functional group with the existence of elastase. These heterogeneous particles will be beneficial for the delivery of combination therapies to solve multiple problems that often existed in chronic wound healing or other tissue regeneration process. In summary, this study adds to our understanding of the biological activity of ELP and the interaction mechanism that allow the regulation of cellular behavior. Furthermore this work also investigated the potential therapeutic application of ELP as a delivery platform for chronic wound healing.
9

The Expression of Cell Surface Heparan Sulfate Proteoglycans and Their Roles in Turkey Skeletal Muscle Formation

Liu, Xiaosong 02 April 2003 (has links)
No description available.
10

Investigations of Insulin-Like Growth Factor I Cell Surface Binding: Regulation by Insulin-Like Growth Factor Binding Protein-3 and Heparan Sulfate Proteoglycan

Balderson, Stephanie D. 22 May 1997 (has links)
The primary aim of this text is to gain insight on how cellular activation by a insulin-like growth factor (IGF-I), in the presence of insulin-like growth factor binding protein-3 (IGFBP-3), is influenced by heparan sulfate proteoglycans (HSPG). Initial research will be presented, assumptions and hypotheses that were included in the development of mathematical models will be discussed, and the future enhancements of the models will be explored. There are many potential scenarios for how each component might influence the others. Mathematical modeling techniques will highlight the contributions made by numerous extracellular parameters on IGF-I cell surface binding. Tentative assumptions can be applied to modeling techniques and predictions may aid in the direction of future experiments. Experimentally, it was found that IGFBP-3 inhibited IGF-I Bovine Aortic Endothelial (BAE) cell surface binding while p9 HS slightly increased IGF-I BAE cell surface binding. IGFBP-3 has a higher binding affinity for IGF-I (3 x 10-9 M) than p9 HS has for IGF-I (1.5 x 10-8 M) as determined with cell-free binding assays. The presence of p9 HS countered the inhibiting effect of IGFBP-3 on IGF-I BAE cell surface binding. Although preliminary experiments with labeled p9 HS and IGFBP-3 indicated little to no cell surface binding, later experiments indicated that both IGFBP-3 and p9 HS do bind to the BAE cell surface. Pre-incubation of BAE cells with either IGFBP-3 or p9 HS resulted in an increase of IGF-I BAE cell surface binding . There was a more substantial increase of IGF-I surface binding when cells were pre-incubated with IGFBP- 3 than p9 HS. There was a larger increase of IGF-I BAE cell surface binding when cells were pre-incubated with p9 HS than when p9 HS and IGF-I were added simultaneously. This suggests that IGFBP-3 and p9 HS surface binding plays key role in IGF-I surface binding, however, p9 HS surface binding does not alter IGF-I surface binding as much as IGFBP-3 surface binding seems to. Experimental work helps further the understanding of IGF-I cellular activation as regulated by IGFBP-3 and p9 HS. Developing mathematical models allows the researcher to focus on individual elements in a complex systems and gain insight on how the real system will respond to individual changes. Discrepancies between the model results and the experimental data presented indicate that soluble receptor inhibition is not sufficient to account for experimental results. The alliance of engineering analysis and molecular biology helps to clarify significant principles relevant to the conveyance of growth factors into tissue. Awareness of the effects of individual parameters in the delivery system, made possible with mathematical models, will provide guidance and save time in the design of future therapeutics involving growth factors. / Master of Science

Page generated in 0.0847 seconds