• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 2
  • Tagged with
  • 12
  • 12
  • 12
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Applications of harmonic mappings to rigidity problems /

Chan, Yat-ming, January 2002 (has links)
Thesis (M. Phil.)--University of Hong Kong, 2002. / Includes bibliographical references (leaves 112-116).
2

Rigidity theorems on Hermitian locally symmetric spaces.

January 2012 (has links)
透過使用調和映射的Bochner技巧, Siu[15, 16]證明了對於複維數≥2 時不可約對稱域緊致商空間的複結構的強剛定理. 其後在[9]中, Mok 證明了在任何秩≥2 的不可約對稱域緊致商空間上, 所有具備非正全純雙截曲率的Hermitian 度量必然和典範度量相差一個常數因子. 由這個定理和Siu 的定理可以得出Mostow 剛性定理[14]在特殊情形下的推廣.本論文會對Mok的結果作出研究. / By using Bochner technique of harmonic maps, Siu[15, 16] proved a strong rigidity theorem concerning the complex structure of compact quotients of irreducible bounded symmetric domain of complex dimension≥ 2. Later in [9], Mok proved a metric rigidity theorem which asserts that any Hermitian metric of seminegative holomorphic bisectional curvature on a compact quotient of an irreducible bounded symmetric domain of rank≥ 2 is necessarily a constant multiple of the canonical metric. This theorem together with the theorem of Siu yields a generalization of a special case of Mostow's rigidity theorem[14]. This thesis is an exposition of Mok's results. / Detailed summary in vernacular field only. / Li, Ka Fai. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2012. / Includes bibliographical references (leaves 102-104). / Abstracts also in Chinese. / Chapter 1 --- Introduction --- p.1 / Chapter 2 --- Symmetric Space --- p.5 / Chapter 2.1 --- Riemannian Symmetric Spaces --- p.5 / Chapter 2.2 --- Lie Groups and Lie Algebras --- p.10 / Chapter 2.3 --- Riemannian Symmetric Spaces of Compact and Non-compact type --- p.11 / Chapter 2.4 --- Hermitian Symmetric Spaces --- p.16 / Chapter 2.5 --- Duality --- p.19 / Chapter 3 --- Some Embedding Theorems --- p.22 / Chapter 3.1 --- The Borel Embedding Theorem --- p.22 / Chapter 3.2 --- Root Space Decomposition and Root System --- p.24 / Chapter 3.3 --- The Polydisc Theorem --- p.28 / Chapter 3.4 --- The Harish-Chandra Embedding Theorem --- p.36 / Chapter 4 --- Bounded Symmetric Domains --- p.42 / Chapter 4.1 --- Classical Bounded Symmetric Domains --- p.42 / Chapter 4.2 --- The Bergman metric --- p.57 / Chapter 5 --- Projective and Characteristic Bundle --- p.65 / Chapter 5.1 --- Projectivization of Hermitian Vector Bundle --- p.65 / Chapter 5.2 --- Characteristic bundle --- p.69 / Chapter 6 --- The Hermitian Metric Rigidity Theorem --- p.83 / Chapter 7 --- Appendix --- p.100 / Bibliography --- p.102
3

Rigidity of proper holomorphic mappings between bounded symmetric domains

Tu, Zhenhan. January 2000 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2000. / Includes bibliographical references (leaves 50-53).
4

Rigidity of proper holomorphic mappings between bounded symmetric domains

Tu, Zhenhan. January 2000 (has links)
Thesis (Ph.D.)--University of Hong Kong, 2000. / Includes bibliographical references (leaves 50-53) Also available in print.
5

On the moduli realizations of Hermitian symmetric domains. / CUHK electronic theses & dissertations collection

January 2005 (has links)
The thesis mainly studies two problems in Algebraic Geometry and Hodge Theory. The first problem deals with the geometric realizations of certain Hermitian symmetric domains as moduli space of algebraic varieties, notably the Abelian varieties and Calabi-Yau varieties. The study of the first problem occupies most of the thesis. In section 1.3; we study the second problem, namely, the L2 Higgs cohomology of polarized variation of Hodge structures over Hermitian symmetric domains. / Sheng Mao. / "December 2005." / Advisers: Shing-Tung Yau; Nai-Chung Conan Leung. / Source: Dissertation Abstracts International, Volume: 67-11, Section: B, page: 6442. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (p. 108-113). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese. / School code: 1307.
6

Strings, Branes and Non-trivial Space-times

Björnsson, Jonas January 2008 (has links)
<p>This thesis deals with different aspects of string and /p/-brane theories. One of the motivations for string theory is to unify the forces in nature and produce a quantum theory of gravity. /p/-branes and related objects arise in string theory and are related to a non-perturbative definition of the theory. The results of this thesis might help in understanding string theory better. The first part of the thesis introduces and discusses relevant topics for the second part of the thesis which consists of five papers.</p><p>In the three first papers we develop and treat a perturbative approach to relativistic /p/-branes around stretched geometries. The unperturbed theory is described by a string- or particle-like theory. The theory is solved, within perturbation theory, by constructing successive canonical transformations which map the theory to the unperturbed one order by order. The result is used to define a quantum theory which requires for consistency d = 25 + p dimensions for the bosonic /p/-branes and d = 11 for the supermembrane. This is one of the first quantum results for extended objects beyond string theory and is a confirmation of the expectation of an eleven-dimensional quantum membrane.</p><p>The two last papers deal with a gauged WZNW-approach to strings moving on non-trivial space-times. The groups used in the formulation of these models are connected to Hermitian symmetric spaces of non-compact type. We have found that the GKO-construction does not yield a unitary spectrum. We will show that there exists, however, a different approach, the BRST approach, which gives unitarity under certain conditions. This is the first example of a difference between the GKO- and BRST construction. This is one of the first proofs of unitarity of a string theory in a non-trivial non-compact space-time. Furthermore, new critical string theories in dimensions less then 26 or 10 is found for the bosonic and supersymmetric string, respectively.</p>
7

Strings, Branes and Non-trivial Space-times

Björnsson, Jonas January 2008 (has links)
This thesis deals with different aspects of string and /p/-brane theories. One of the motivations for string theory is to unify the forces in nature and produce a quantum theory of gravity. /p/-branes and related objects arise in string theory and are related to a non-perturbative definition of the theory. The results of this thesis might help in understanding string theory better. The first part of the thesis introduces and discusses relevant topics for the second part of the thesis which consists of five papers. In the three first papers we develop and treat a perturbative approach to relativistic /p/-branes around stretched geometries. The unperturbed theory is described by a string- or particle-like theory. The theory is solved, within perturbation theory, by constructing successive canonical transformations which map the theory to the unperturbed one order by order. The result is used to define a quantum theory which requires for consistency d = 25 + p dimensions for the bosonic /p/-branes and d = 11 for the supermembrane. This is one of the first quantum results for extended objects beyond string theory and is a confirmation of the expectation of an eleven-dimensional quantum membrane. The two last papers deal with a gauged WZNW-approach to strings moving on non-trivial space-times. The groups used in the formulation of these models are connected to Hermitian symmetric spaces of non-compact type. We have found that the GKO-construction does not yield a unitary spectrum. We will show that there exists, however, a different approach, the BRST approach, which gives unitarity under certain conditions. This is the first example of a difference between the GKO- and BRST construction. This is one of the first proofs of unitarity of a string theory in a non-trivial non-compact space-time. Furthermore, new critical string theories in dimensions less then 26 or 10 is found for the bosonic and supersymmetric string, respectively.
8

Products of diagonalizable matrices

Khoury, Maroun Clive 00 December 1900 (has links)
Chapter 1 reviews better-known factorization theorems of a square matrix. For example, a square matrix over a field can be expressed as a product of two symmetric matrices; thus square matrices over real numbers can be factorized into two diagonalizable matrices. Factorizing matrices over complex num hers into Hermitian matrices is discussed. The chapter concludes with theorems that enable one to prescribe the eigenvalues of the factors of a square matrix, with some degree of freedom. Chapter 2 proves that a square matrix over arbitrary fields (with one exception) can be expressed as a product of two diagona lizab le matrices. The next two chapters consider decomposition of singular matrices into Idempotent matrices, and of nonsingutar matrices into Involutions. Chapter 5 studies factorization of a comp 1 ex matrix into Positive-( semi )definite matrices, emphasizing the least number of such factors required / Mathematical Sciences / M.Sc. (MATHEMATICS)
9

Products of diagonalizable matrices

Khoury, Maroun Clive 09 1900 (has links)
Chapter 1 reviews better-known factorization theorems of a square matrix. For example, a square matrix over a field can be expressed as a product of two symmetric matrices; thus square matrices over real numbers can be factorized into two diagonalizable matrices. Factorizing matrices over complex numbers into Hermitian matrices is discussed. The chapter concludes with theorems that enable one to prescribe the eigenvalues of the factors of a square matrix, with some degree of freedom. Chapter 2 proves that a square matrix over arbitrary fields (with one exception) can be expressed as a product of two diagonalizable matrices. The next two chapters consider decomposition of singular matrices into Idempotent matrices, and of nonsingular matrices into Involutions. Chapter 5 studies factorization of a complex matrix into Positive-(semi)definite matrices, emphasizing the least number of such factors required. / Mathematical Sciences / M. Sc. (Mathematics)
10

Products of diagonalizable matrices

Khoury, Maroun Clive 00 December 1900 (has links)
Chapter 1 reviews better-known factorization theorems of a square matrix. For example, a square matrix over a field can be expressed as a product of two symmetric matrices; thus square matrices over real numbers can be factorized into two diagonalizable matrices. Factorizing matrices over complex num hers into Hermitian matrices is discussed. The chapter concludes with theorems that enable one to prescribe the eigenvalues of the factors of a square matrix, with some degree of freedom. Chapter 2 proves that a square matrix over arbitrary fields (with one exception) can be expressed as a product of two diagona lizab le matrices. The next two chapters consider decomposition of singular matrices into Idempotent matrices, and of nonsingutar matrices into Involutions. Chapter 5 studies factorization of a comp 1 ex matrix into Positive-( semi )definite matrices, emphasizing the least number of such factors required / Mathematical Sciences / M.Sc. (MATHEMATICS)

Page generated in 0.0822 seconds