• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Products of diagonalizable matrices

Khoury, Maroun Clive 00 December 1900 (has links)
Chapter 1 reviews better-known factorization theorems of a square matrix. For example, a square matrix over a field can be expressed as a product of two symmetric matrices; thus square matrices over real numbers can be factorized into two diagonalizable matrices. Factorizing matrices over complex num hers into Hermitian matrices is discussed. The chapter concludes with theorems that enable one to prescribe the eigenvalues of the factors of a square matrix, with some degree of freedom. Chapter 2 proves that a square matrix over arbitrary fields (with one exception) can be expressed as a product of two diagona lizab le matrices. The next two chapters consider decomposition of singular matrices into Idempotent matrices, and of nonsingutar matrices into Involutions. Chapter 5 studies factorization of a comp 1 ex matrix into Positive-( semi )definite matrices, emphasizing the least number of such factors required / Mathematical Sciences / M.Sc. (MATHEMATICS)
2

Products of diagonalizable matrices

Khoury, Maroun Clive 09 1900 (has links)
Chapter 1 reviews better-known factorization theorems of a square matrix. For example, a square matrix over a field can be expressed as a product of two symmetric matrices; thus square matrices over real numbers can be factorized into two diagonalizable matrices. Factorizing matrices over complex numbers into Hermitian matrices is discussed. The chapter concludes with theorems that enable one to prescribe the eigenvalues of the factors of a square matrix, with some degree of freedom. Chapter 2 proves that a square matrix over arbitrary fields (with one exception) can be expressed as a product of two diagonalizable matrices. The next two chapters consider decomposition of singular matrices into Idempotent matrices, and of nonsingular matrices into Involutions. Chapter 5 studies factorization of a complex matrix into Positive-(semi)definite matrices, emphasizing the least number of such factors required. / Mathematical Sciences / M. Sc. (Mathematics)
3

Products of diagonalizable matrices

Khoury, Maroun Clive 00 December 1900 (has links)
Chapter 1 reviews better-known factorization theorems of a square matrix. For example, a square matrix over a field can be expressed as a product of two symmetric matrices; thus square matrices over real numbers can be factorized into two diagonalizable matrices. Factorizing matrices over complex num hers into Hermitian matrices is discussed. The chapter concludes with theorems that enable one to prescribe the eigenvalues of the factors of a square matrix, with some degree of freedom. Chapter 2 proves that a square matrix over arbitrary fields (with one exception) can be expressed as a product of two diagona lizab le matrices. The next two chapters consider decomposition of singular matrices into Idempotent matrices, and of nonsingutar matrices into Involutions. Chapter 5 studies factorization of a comp 1 ex matrix into Positive-( semi )definite matrices, emphasizing the least number of such factors required / Mathematical Sciences / M.Sc. (MATHEMATICS)
4

Products of diagonalizable matrices

Khoury, Maroun Clive 09 1900 (has links)
Chapter 1 reviews better-known factorization theorems of a square matrix. For example, a square matrix over a field can be expressed as a product of two symmetric matrices; thus square matrices over real numbers can be factorized into two diagonalizable matrices. Factorizing matrices over complex numbers into Hermitian matrices is discussed. The chapter concludes with theorems that enable one to prescribe the eigenvalues of the factors of a square matrix, with some degree of freedom. Chapter 2 proves that a square matrix over arbitrary fields (with one exception) can be expressed as a product of two diagonalizable matrices. The next two chapters consider decomposition of singular matrices into Idempotent matrices, and of nonsingular matrices into Involutions. Chapter 5 studies factorization of a complex matrix into Positive-(semi)definite matrices, emphasizing the least number of such factors required. / Mathematical Sciences / M. Sc. (Mathematics)

Page generated in 0.1739 seconds