• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A HUBBLE SPACE TELESCOPE STUDY OF THE ENIGMATIC MILKY WAY HALO GLOBULAR CLUSTER CRATER

Weisz, Daniel R., Koposov, Sergey E., Dolphin, Andrew E., Belokurov, Vasily, Gieles, Mark, Mateo, Mario L., Olszewski, Edward W., Sills, Alison, Walker, Matthew G. 02 May 2016 (has links)
We analyze the resolved stellar populations of the faint stellar system, Crater, based on deep optical imaging taken with the Advanced Camera for Surveys on the Hubble Space Telescope. Crater's color-magnitude diagram (CMD) extends similar to 4 mag below the oldest main-sequence (MS) turnoff. Structurally, we find that Crater has a half-light radius of similar to 20 pc and no evidence for tidal distortions. We model. Crater's CMD as a simple stellar population (SSP) and alternatively by solving for its full star formation history. In both cases, Crater is well. described by an SSP with an age of similar to 7.5 Gyr, a metallicity of [ M / H] similar to 1.65, a total stellar mass of M-star similar to 1e4 M-circle dot, and. a luminosity of M-V similar to - 5.3, located at a distance of d similar to 145 kpc, with modest uncertainties due to differences in the underlying stellar evolution models. We argue that the sparse sampling of stars above the turnoff and subgiant branch are likely to be 1.0-1.4 M-circle dot blue stragglers and their evolved descendants, as opposed to intermediate- age MS stars. We find that. Crater is an unusually young cluster given its location in the Galaxy's outer halo. We discuss scenarios for Crater's origin, including the possibility of being stripped from the SMC or the accretion from lower- mass dwarfs such as Leo I or Carina. Despite uncertainty over its progenitor system, Crater appears to have been incorporated into the Galaxy more recently than z similar to 1 (8 Gyr ago), providing an important new constraint on the accretion history of the Galaxy.
2

Characterization of the Stellar / Substellar Boundary

Dieterich, Sergio Bonucci 18 November 2013 (has links)
The aim of this dissertation is to address the topic of distinguishing very low mass stars from brown dwarfs through observational means. To that end, we seek to better characterize both populations and establish mechanisms that facilitate establishing an individual object's membership in either the very low mass star or the brown dwarf populations. The dissertation is composed of three separate observational studies. In the first study we report on our analysis of HST/NICMOS snapshot high resolution images of 255 stars in 201 systems within ~10 parsecs of the Sun. We establish magnitude and separation limits for which companions can be ruled out for each star in the sample, and then perform a comprehensive sensitivity and completeness analysis for the subsample of 138 M dwarfs in 126 systems. We calculate a multiplicity fraction of $0.0-0.0+3.5% for L companions to M dwarfs in the separation range of 5 to 70 AU, and $2.3-0.7+5.0% for L and T companions to M dwarfs in the separation range of 10 to 70 AU. Considering these results and results from several other studies, we argue that the so-called "brown dwarf desert" extends to binary systems with low mass primaries and is largely independent of primary mass, mass ratio, and separation. In the second study we construct a Hertzsprung-Russell diagram for the stellar/substellar boundary based on a sample of 63 objects ranging in spectral type from M6V to L4. We report new VRI photometry for 63 objects and new trigonometric parallaxes for 37 objects. We employ a novel SED fitting algorithm to determine effective temperatures, bolometric luminosities, and radii. We find evidence for the local minimum in the radius-temperature and radius-luminosity trends that may indicate the end of the stellar main sequence and the start of the brown dwarf sequence at $Teff ~2075K, log(L/Lsun) ~ -3.9, and (R/Rsun) ~ 0.086. The third study is a pilot study for future work and part of a long term search for astrometric binaries that have the potential to yield dynamical masses. We report the discovery of five new multiple systems and discuss their potential for determining dynamical masses: LHS 2071AB, GJ 1215 ABC, LTT 7434 AB, LHS 501 AC, and LHS 3738 AB.
3

A critical assessment of ages derived using pre-main-sequence isochrones in colour-magnitude diagrams

Bell, Cameron Pearce MacDonald January 2012 (has links)
In this thesis a critical assessment of the ages derived using theoretical pre-main-sequence (pre-MS) stellar evolutionary models is presented by comparing the predictions to the low-mass pre-MS population of 14 young star-forming regions (SFRs) in colour-magnitude diagrams (CMDs). Deriving pre-MS ages requires precise distances and estimates of the reddening. Therefore, the main-sequence (MS) members of the SFRs have been used to derive a self-consistent set of statistically robust ages, distances and reddenings with associated uncertainties using a maximum-likelihood fitting statistic and MS evolutionary models. A photometric method (known as the Q-method) for de-reddening individual stars in regions where the extinction is spatially variable has been updated and is presented. The effects of both the model dependency and the SFR composition on these derived parameters are also discussed. The problem of calibrating photometric observations of red pre-MS stars is examined and it is shown that using observations of MS stars to transform the data into a standard photometric system can introduce significant errors in the position of the pre-MS locus in CMD space. Hence, it is crucial that precise photometric studies (especially of pre- MS objects) be carried out in the natural photometric system of the observations. This therefore requires a robust model of the system responses for the instrument used, and thus the calculated responses for the Wide-Field Camera on the Isaac Newton Telescope are presented. These system responses have been tested using standard star observations and have been shown to be a good representation of the photometric system. A benchmark test for the pre-MS evolutionary models is performed by comparing them to a set of well-calibrated CMDs of the Pleiades in the wavelength regime 0.4−2.5 μm. The masses predicted by these models are also tested against dynamical masses using a sample of MS binaries by calculating the system magnitude in a given photometric band- pass. This analysis shows that for Teff ≤ 4000 K the models systematically overestimate the flux by a factor of 2 at 0.5 μm, though this decreases with wavelength, becoming negligible at 2.2 μm. Thus before the pre-MS models are used to derive ages, a recalibration of the models is performed by incorporating an empirical colour-Teff relation and bolometric corrections based on the Ks-band luminosity of Pleiades members, with theoretical corrections for the dependence on the surface gravity (log g). The recalibrated pre-MS model isochrones are used to derive ages from the pre-MS populations of the SFRs. These ages are then compared with the MS derivations, thus providing a powerful diagnostic tool with which to discriminate between the different pre- MS age scales that arise from a much stronger model dependency in the pre-MS regime. The revised ages assigned to each of the 14 SFRs are up to a factor two older than previous derivations, a result with wide-ranging implications, including that circumstellar discs survive longer and that the average Class II lifetime is greater than currently believed.
4

The HST large programme on omega Centauri - I. Multiple stellar populations at the bottom of the main sequence probed in NIR-Optical

Milone, A. P., Marino, A. F., Bedin, L. R., Anderson, J., Apai, D., Bellini, A., Bergeron, P., Burgasser, A. J., Dotter, A., Rees, J. M. 07 1900 (has links)
As part of a large investigation with Hubble Space Telescope to study the faintest stars within the globular cluster omega Centauri, in this work we present early results on the multiplicity of its main sequence (MS) stars, based on deep optical and near-infrared observations. By using appropriate colour-magnitude diagrams, we have identified, for the first time, the two main stellar Populations I and II along the entire MS, from the turn-off towards the hydrogen-burning limit. We have compared the observations with suitable synthetic spectra of MS stars and conclude that the two main sequences (MSs) are consistent with stellar populations with different metallicity, helium and light-element abundance. Specifically, MS-I corresponds to a metal-poor stellar population ([Fe/H] similar to -1.7) with Y similar to 0.25 and [O/Fe] similar to 0.30. The MS-II hosts helium-rich (Y similar to 0.37-0.40) stars with metallicity ranging from [Fe/H] similar to -1.7 to -1.4. Below the MS knee (m(F160W) similar to 19.5), our photometry reveals that each of the two main MSs hosts stellar subpopulations with different oxygen abundances, with very O-poor stars ([O/Fe] similar to -0.5) populating the MS-II. Such a complexity has never been observed in previous studies of M-dwarfs in globular clusters. A few months before the launch of the James Webb Space Telescope, these results demonstrate the power of optical and near-infrared photometry in the study of multiple stellar populations in globular clusters.

Page generated in 0.0317 seconds