• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Uncalibrated robotic visual servo tracking for large residual problems

Munnae, Jomkwun 17 November 2010 (has links)
In visually guided control of a robot, a large residual problem occurs when the robot configuration is not in the neighborhood of the target acquisition configuration. Most existing uncalibrated visual servoing algorithms use quasi-Gauss-Newton methods which are effective for small residual problems. The solution used in this study switches between a full quasi-Newton method for large residual case and the quasi-Gauss-Newton methods for the small case. Visual servoing to handle large residual problems for tracking a moving target has not previously appeared in the literature. For large residual problems various Hessian approximations are introduced including an approximation of the entire Hessian matrix, the dynamic BFGS (DBFGS) algorithm, and two distinct approximations of the residual term, the modified BFGS (MBFGS) algorithm and the dynamic full Newton method with BFGS (DFN-BFGS) algorithm. Due to the fact that the quasi-Gauss-Newton method has the advantage of fast convergence, the quasi-Gauss-Newton step is used as the iteration is sufficiently near the desired solution. A switching algorithm combines a full quasi-Newton method and a quasi-Gauss-Newton method. Switching occurs if the image error norm is less than the switching criterion, which is heuristically selected. An adaptive forgetting factor called the dynamic adaptive forgetting factor (DAFF) is presented. The DAFF method is a heuristic scheme to determine the forgetting factor value based on the image error norm. Compared to other existing adaptive forgetting factor schemes, the DAFF method yields the best performance for both convergence time and the RMS error. Simulation results verify validity of the proposed switching algorithms with the DAFF method for large residual problems. The switching MBFGS algorithm with the DAFF method significantly improves tracking performance in the presence of noise. This work is the first successfully developed model independent, vision-guided control for large residual with capability to stably track a moving target with a robot.
2

Numerical Algorithms for Optimization Problems in Genetical Analysis

Mishchenko, Kateryna January 2008 (has links)
<p>The focus of this thesis is on numerical algorithms for efficient solution of QTL analysis problem in genetics.</p><p>Firstly, we consider QTL mapping problems where a standard least-squares model is used for computing the model fit. We develop optimization methods for the local problems in a hybrid global-local optimization scheme for determining the optimal set of QTL locations. Here, the local problems have constant bound constraints and may be non-convex and/or flat in one or more directions. We propose an enhanced quasi-Newton method and also implement several schemes for constrained optimization. The algorithms are adopted to the QTL optimization problems. We show that it is possible to use the new schemes to solve problems with up to 6 QTLs efficiently and accurately, and that the work is reduced with up to two orders magnitude compared to using only global optimization.</p><p>Secondly, we study numerical methods for QTL mapping where variance component estimation and a REML model is used. This results in a non-linear optimization problem for computing the model fit in each set of QTL locations. Here, we compare different optimization schemes and adopt them for the specifics of the problem. The results show that our version of the active set method is efficient and robust, which is not the case for methods used earlier. We also study the matrix operations performed inside the optimization loop, and develop more efficient algorithms for the REML computations. We develop a scheme for reducing the number of objective function evaluations, and we accelerate the computations of the derivatives of the log-likelihood by introducing an efficient scheme for computing the inverse of the variance-covariance matrix and other components of the derivatives of the log-likelihood.</p>
3

Numerical Algorithms for Optimization Problems in Genetical Analysis

Mishchenko, Kateryna January 2008 (has links)
The focus of this thesis is on numerical algorithms for efficient solution of QTL analysis problem in genetics. Firstly, we consider QTL mapping problems where a standard least-squares model is used for computing the model fit. We develop optimization methods for the local problems in a hybrid global-local optimization scheme for determining the optimal set of QTL locations. Here, the local problems have constant bound constraints and may be non-convex and/or flat in one or more directions. We propose an enhanced quasi-Newton method and also implement several schemes for constrained optimization. The algorithms are adopted to the QTL optimization problems. We show that it is possible to use the new schemes to solve problems with up to 6 QTLs efficiently and accurately, and that the work is reduced with up to two orders magnitude compared to using only global optimization. Secondly, we study numerical methods for QTL mapping where variance component estimation and a REML model is used. This results in a non-linear optimization problem for computing the model fit in each set of QTL locations. Here, we compare different optimization schemes and adopt them for the specifics of the problem. The results show that our version of the active set method is efficient and robust, which is not the case for methods used earlier. We also study the matrix operations performed inside the optimization loop, and develop more efficient algorithms for the REML computations. We develop a scheme for reducing the number of objective function evaluations, and we accelerate the computations of the derivatives of the log-likelihood by introducing an efficient scheme for computing the inverse of the variance-covariance matrix and other components of the derivatives of the log-likelihood.
4

Revisiting optimization algorithms for maximum likelihood estimation

Mai, Anh Tien 12 1900 (has links)
Parmi les méthodes d’estimation de paramètres de loi de probabilité en statistique, le maximum de vraisemblance est une des techniques les plus populaires, comme, sous des conditions l´egères, les estimateurs ainsi produits sont consistants et asymptotiquement efficaces. Les problèmes de maximum de vraisemblance peuvent être traités comme des problèmes de programmation non linéaires, éventuellement non convexe, pour lesquels deux grandes classes de méthodes de résolution sont les techniques de région de confiance et les méthodes de recherche linéaire. En outre, il est possible d’exploiter la structure de ces problèmes pour tenter d’accélerer la convergence de ces méthodes, sous certaines hypothèses. Dans ce travail, nous revisitons certaines approches classiques ou récemment d´eveloppées en optimisation non linéaire, dans le contexte particulier de l’estimation de maximum de vraisemblance. Nous développons également de nouveaux algorithmes pour résoudre ce problème, reconsidérant différentes techniques d’approximation de hessiens, et proposons de nouvelles méthodes de calcul de pas, en particulier dans le cadre des algorithmes de recherche linéaire. Il s’agit notamment d’algorithmes nous permettant de changer d’approximation de hessien et d’adapter la longueur du pas dans une direction de recherche fixée. Finalement, nous évaluons l’efficacité numérique des méthodes proposées dans le cadre de l’estimation de modèles de choix discrets, en particulier les modèles logit mélangés. / Maximum likelihood is one of the most popular techniques to estimate the parameters of some given distributions. Under slight conditions, the produced estimators are consistent and asymptotically efficient. Maximum likelihood problems can be handled as non-linear programming problems, possibly non convex, that can be solved for instance using line-search methods and trust-region algorithms. Moreover, under some conditions, it is possible to exploit the structures of such problems in order to speedup convergence. In this work, we consider various non-linear programming techniques, either standard or recently developed, within the maximum likelihood estimation perspective. We also propose new algorithms to solve this estimation problem, capitalizing on Hessian approximation techniques and developing new methods to compute steps, in particular in the context of line-search approaches. More specifically, we investigate methods that allow us switching between Hessian approximations and adapting the step length along the search direction. We finally assess the numerical efficiency of the proposed methods for the estimation of discrete choice models, more precisely mixed logit models.
5

Revisiting optimization algorithms for maximum likelihood estimation

Mai, Anh Tien 12 1900 (has links)
Parmi les méthodes d’estimation de paramètres de loi de probabilité en statistique, le maximum de vraisemblance est une des techniques les plus populaires, comme, sous des conditions l´egères, les estimateurs ainsi produits sont consistants et asymptotiquement efficaces. Les problèmes de maximum de vraisemblance peuvent être traités comme des problèmes de programmation non linéaires, éventuellement non convexe, pour lesquels deux grandes classes de méthodes de résolution sont les techniques de région de confiance et les méthodes de recherche linéaire. En outre, il est possible d’exploiter la structure de ces problèmes pour tenter d’accélerer la convergence de ces méthodes, sous certaines hypothèses. Dans ce travail, nous revisitons certaines approches classiques ou récemment d´eveloppées en optimisation non linéaire, dans le contexte particulier de l’estimation de maximum de vraisemblance. Nous développons également de nouveaux algorithmes pour résoudre ce problème, reconsidérant différentes techniques d’approximation de hessiens, et proposons de nouvelles méthodes de calcul de pas, en particulier dans le cadre des algorithmes de recherche linéaire. Il s’agit notamment d’algorithmes nous permettant de changer d’approximation de hessien et d’adapter la longueur du pas dans une direction de recherche fixée. Finalement, nous évaluons l’efficacité numérique des méthodes proposées dans le cadre de l’estimation de modèles de choix discrets, en particulier les modèles logit mélangés. / Maximum likelihood is one of the most popular techniques to estimate the parameters of some given distributions. Under slight conditions, the produced estimators are consistent and asymptotically efficient. Maximum likelihood problems can be handled as non-linear programming problems, possibly non convex, that can be solved for instance using line-search methods and trust-region algorithms. Moreover, under some conditions, it is possible to exploit the structures of such problems in order to speedup convergence. In this work, we consider various non-linear programming techniques, either standard or recently developed, within the maximum likelihood estimation perspective. We also propose new algorithms to solve this estimation problem, capitalizing on Hessian approximation techniques and developing new methods to compute steps, in particular in the context of line-search approaches. More specifically, we investigate methods that allow us switching between Hessian approximations and adapting the step length along the search direction. We finally assess the numerical efficiency of the proposed methods for the estimation of discrete choice models, more precisely mixed logit models.

Page generated in 0.1308 seconds