• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 4
  • Tagged with
  • 12
  • 12
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Implications of limited slip in crystal plasticity

Lloyd, Jeffrey Townsend 19 May 2010 (has links)
To better understand consequences of classical assumptions regarding deformation mechanisms at the mesoscale, experimental observations of mesoscale deformation are presented. In light of actual micrographics of deformed polycrystals, the Von Mises criterion which states that 5 independent plastic deformation sources are needed at each material point to satisfy compatibility is studied, and the consequences of violating this assumption are presented through comprehensive parametric studies. From these studies, it can be concluded that not only are 5 independent plastic deformation sources not needed or observed at each point, but if less than 5 sources are allowed to be active a new physical understanding of a mechanism for kinematic hardening emerges. Furthermore, for enhanced subgrain rotation and evolution the Von Mises criterion must be violated. The second focus of this work is looking at studies, experiments, and models of mesoscale deformation in order to better understand controlling deformation length scales, so that they can be fed into a combined top-down, bottom-up, non-uniform crystal plasticity model that captures the variability provided by the mesoscale during deformation. This can in turn be used to more accurately model the heterogeneity provided by the response of each grain. The length scale intuited from insight into mesoscale deformation mechanisms through observation of experiments and analytical models is the free slip line length of each slip system, which informs non-uniform material parameters in a crystal plasticity model that control the yielding, hardening, and subsequent softening of each individual slip system. The usefulness of this non-uniform multiscale crystal plasticity model is then explored with respect to its ability to reproduce experimentally measured responses at different strain levels for different size grains. Furthermore, a "Mantle-Core" type model which combines both the non-uniform material parameter model and the limited slip model is created, in which the majority of plastic deformation is accommodated near the grain boundary under multi-slip, and uniform plastic deformation occurs in the bulk dominated by double or triple slip. These models are compared for similar levels of hardening, and the pole figures that result from their deformation are compared to experimental pole figures. While there are other models that can capture the heterogeneity introduced by mesoscale deformation at the grain scale, this combined top-down, bottom-up multiscale crystal plasticity model is by far one of the most computationally efficient as the heterogeneity of the mesoscale is does not emerge by introducing higher order terms, but rather by incorporating the heterogeneity into a simple crystal plasticity formulation. Therefore, as computational power increases, this approach will be among the first that will be able to perform accurate polycrystal level modeling while retaining the heterogeneity introduced by non-local mesoscale deformation mechanisms at the sub-grain scale.
2

Heat Transfer During Melting and Solidification in Heterogeneous Materials

Sayar, Sepideh 18 December 2000 (has links)
A one-dimensional model of a heterogeneous material consisting of a matrix with embedded separated particles is considered, and the melting or solidification of the particles is investigated. The matrix is in imperfect contact with the particles, and the lumped capacity approximation applies to each individual particle. Heat is generated inside the particles or is transferred from the matrix to the particles coupled through a contact conductance. The matrix is not allowed to change phase and energy is either generated inside the matrix or transferred from the boundaries, which is initially conducted through the matrix material. The physical model of this coupled, two-step heat transfer process is solved using the energy method. The investigation is conducted in several phases using a building block approach. First, a lumped capacity system during phase transition is studied, then a one-dimensional homogeneous material during phase change is investigated, and finally the one-dimensional heterogeneous material is analyzed. A numerical solution based on the finite difference method is used to solve the model equations. This method allows for any kind of boundary conditions, any combination of material properties, particle sizes and contact conductance. In addition, computer programs, using Mathematica, are developed for the lumped capacity system, homogeneous material, and heterogeneous material. Results show the effects of control volume thickness, time step, contact conductance, material properties, internal sources, and external sources. / Master of Science
3

Low Frequency Noise Reduction Using Novel Poro-Elastic Acoustic Metamaterials

Slagle, Adam Christopher 04 June 2014 (has links)
Low frequency noise is a common problem in aircraft and launch vehicles. New technologies must be investigated to reduce this noise while contributing minimal weight to the structure. This thesis investigates passive and active control methods to improve low frequency sound absorption and transmission loss using acoustic metamaterials. The acoustic metamaterials investigated consist of poro-elastic acoustic heterogeneous (HG) metamaterials and microperforated (MPP) acoustic metamaterials. HG metamaterials consist of poro-elastic material with a periodic arrangement of embedded masses acting as an array of mass-spring- damper systems. MPP acoustic metamaterials consist of periodic layers of micro-porous panels embedded in poro-elastic material. This thesis examines analytically, experimentally, and numerically the behavior of acoustic metamaterials compared to a baseline poro-elastic sample. The development of numerical techniques using finite element analysis will aid in understanding the physics behind their functionality and will influence their design. Design studies are performed to understand the effects of varying the density, size, shape, and placement of the embedded masses as well as the location and distribution of microperforated panels in poro- elastic material. An active HG metamaterial is investigated, consisting of an array of active masses embedded within poro-elastic material. Successful tonal and broadband noise control is achieved using a feedforward, filtered-x LMS control algorithm to minimize the downstream sound pressure level. Low-frequency absorption and transmission loss is successfully increased in the critical frequency range below 500 Hz. Acoustic metamaterials are compact compared to conventional materials and find applications in controlling low-frequency sound radiation in aircraft and launch vehicles. / Master of Science
4

INTEGRATED MULTISCALE CHARACTERIZATION AND MODELING OF DUCTILE FRACTURE IN HETEROGENEOUS ALUMINUM ALLOYS

Valiveti, Dakshina M. 30 September 2009 (has links)
No description available.
5

Nouvelle méthodologie d'identification des propriétés mécaniques locales d'un matériau hétérogène par nanoindentation : application aux matériaux du génie civil / New methodology for identifying local mechanical properties of a heterogeneous material by nanoindentation : application to civil engineering materials

Nguyen, Dac Loi 05 December 2017 (has links)
Le présent travail propose et développe une méthodologie complète d’identification des propriétés mécaniques locales d’un matériau hétérogène à l’échelle des phases constitutives. Il s’agit d’une combinaison de compétences très diverses, à la fois en théorique, en simulation numérique et en expérimentation. Plus précisément, la partie théorique concerne la détermination des relations nano-micro pour le module d’indentation homogénéisé par des techniques de changement d’échelle; la partie numérique basée sur la théorie du calcul à la rupture est réalisée en vue de trouver de ces dernières relations applicables pour la dureté; et la dernière partie est effectuée pour récupérer les propriétés homogénéisées par la voie expérimentale à l’aide de la technique de nano-indentation. L’étude expérimentale de la thèse est pour l’objectif de déterminer des propriétés d’indentation de différents échantillons de pâte de ciment. Un programme expérimental complet, est développé, qui permet de caractériser des phases principales à l’échelle micrométrique de ce matériau, parmi lesquelles nous nous intéressons surtout à celles plus importantes correspondantes à des phases de la matrice C-S-H. La modélisation du problème lié à l’enfoncement d’une pointe d’indentation dans un matériau est étudiée. Pour cela, la première voie, basée sur l’approche cinématique du calcul à la rupture, consiste à tenter de construire des mécanismes de ruine analytiquement, puis à les faire évoluer en fonction du changement de la géométrie initiale, afin d’obtenir la charge de ruine correspondante. La seconde voie consiste ensuite à suivre la même approche, mais en construisant numériquement ces mécanismes de ruine. La charge obtenue dépend naturellement des paramètres de critères retenus, que l’on détermine grâce à la combinaison avec les résultats expérimentaux. Les critères de résistance de Von-Mises et de Tresca valables pour des matériaux purement cohérents ainsi que celui de forme elliptique sont examinés dans ce travail / The present work proposes and develops a complete methodology for identifying the local mechanical properties of a heterogeneous material at the scale of the constitutive phases. It is a combination of very diverse skills in theory, in numerical simulation and in experimentation. More precisely, the theoretical part concerns the determination of the nano-micro relations for the indentation module; the numerical part based on the yield design theory is carried out to find the last relations applicable for the hardness; and the last part is performed to obtain homogenized properties by the experimental way using the nano-indentation technique. The experimental study of the thesis is for the purpose of determining indentation properties of different cement paste samples. A complete experimental program, is developed, which allows characterizing the main phases at the micrometric scale of this material, among which we are mainly interested in the C-S-H matrix phases. The modeling of the problem related to the penetration of an indentation point into a material is studied. For this, the first way, based on the kinematic approach of the yield design theory, consists in trying to construct ruin mechanisms analytically, then to make them evolve according to the change of the initial geometry, in order to obtain the corresponding ultimate load. The second way is then to follow the same approach, but by building numerically these ruin mechanisms. The obtained load depends naturally on the retained criteria parameters, which are determined by the combination with the experimental results. The Von-Mises and Tresca strength criteria for purely coherent materials as well as the elliptical one are examined in this work
6

Three-dimensional multi-scale hydraulic fracturing simulation in heterogeneous material using Dual Lattice Model

Wong, John Kam-wing January 2018 (has links)
Hydraulic fracturing is a multi-physics multi-scale problem related to natural processes such as the formation of dikes. It also has wide engineering applications such as extraction of unconventional resources, enhanced geothermal energy and carbon capture and storage. Current simulators are highly simplified because of the assumption of homogeneous reservoir. Unconventional reservoirs are heterogeneous owing to the presence of natural fracture network. Because of high computational effort, three-dimensional multi-scale simulations are uncommon, in particular, modelling material as a heterogeneous medium. Lattice Element Method (LEM) is therefore proposed for multi-scale simulation of heterogeneous material. In LEM, material is discretised into cells and their interactions are modelled by lattices, hence a three-dimensional model is simplified to a network of one-dimensional lattice. Normal, shear and rotational springs are used to define the constitutive laws of a lattice. LEM enables desktop computers for simulation of a lattice model that consists of millions of lattices. From simulations, normal springs govern the macroscopic bulk deformation while shear springs govern the macroscopic distortion. There is fluctuation of stresses even under uniform loading which is one of the characteristics of a lattice model. The magnitude increases with the stiffness ratio of shear spring to normal spring. Fracturing process can be modelled by LEM by introducing a microscopic tensile strength and a microscopic shear strength to the lattice properties. The strength parameters can be related to fracture toughness with the length scales of cells. From simulations, the relationships between model parameters and macroscopic parameters that are measurable in experiments are identified. From the simulations of uni-axial tension tests, both the spring stiffness ratio and the applied heterogeneity govern the fracturing process. The heterogeneity increases the ductility at the expense of the reduction on the macroscopic strengths. Different stages of fracturing are identified which are characterised by the model heterogeneity. Heterogeneous models go through the stages of the spatially distributed microscrack formation, the growth of multiple fracture clusters to the dominant fracture propagation. For homogeneous models, one of the microcracks rapidly propagates and becomes a dominant fracture with the absence of intermediate stages. From the uni-axial compression test simulations, the peak compressive stress is reached at the onset of the microscopic shear crack formation. Ductility is governed by the stiffness reduction ratio of a lattice in closed fractured stage to its unfractured stage. A novel Dual Lattice Model (DLM) is proposed for hydraulic fracture simulation by coupling a solid lattice model with a fluid lattice model. From DLM simulations of hydraulic fracturing of the classical penny shape crack problem under hydrostatic condition, the heterogeneities from both the fracture asperity and the applied heterogeneity increase the apparent fracture toughness. A semi-analytical solution is derived to consider the effect of fluid viscosity in the elastic deformation regime. Two asymptotes are identified that gives steep pressure gradients near the injection point and near the fracture tip which are also identified in the DLM simulations. Simulations also show three evolving regimes on energy dissipation/transfer mechanisms: the viscosity dominant, the elastic deformation dominant and the mixture of elastic deformation and toughness.
7

Méthodes d'homogénéisation pour la modélisation électromagnétique de matériaux composites. Application au blindage de boîtiers d’équipement électronique / Homogenization methods for electromagnetic modeling of composite materials. Application to shielding enclosures of electronic devices

Préault, Valentin 06 December 2013 (has links)
Le nombre d’appareils électroniques et de systèmes de communication sans fil a considérablement augmenté au cours des 20 dernières années. Les boîtiers de blindage utilisés pour protéger les appareils électroniques contre les radiations externes, mais aussi pour limiter leurs émissions sont généralement conçus en alliages d’aluminium. Mais la nécessité de réduire le poids des aéronefs incite l’industrie aéronautique à l’utilisation de matériaux composites.La modélisation de boîtiers de blindage composés de matériaux homogènes est possible par l’utilisation d’outils numériques tels que la méthode des éléments finis. Mais la discrétisation de boîtiers constitués de matériaux composites impliquerait un nombre d’éléments trop important rendant impossible toute modélisation numérique. Le recours à l’homogénéisation semi-analytique est une possibilité pour s’affranchir de cette restriction. Les milieux homogènes équivalents obtenus avec ces méthodes peuvent être insérés dans des outils numériques pour simuler le comportement électromagnétique de boîtiers de blindage complexes. Les modèles d’homogénéisation existants, tel que le modèle de Maxwell-Garnett, sont toutefois limités a des applications quasi-statiques.La définition des propriétés effectives de matériaux composites illuminés par des ondes électromagnétiques est l’objectif principal de ce travail. Il en résulte deux méthodes d’homogénéisation dynamiques. La première introduit un effet de taille entre les fibres et la longueur d'onde. Elle permet ainsi d’étendre une méthode basée sur des problèmes d'inclusion aux micro-ondes. Mais elle reste limitée par l’apparition de l’effet de peau dans les renforts conducteurs. La seconde est basée sur la définition des pertes par effet Joule dans les fibres, permettant ainsi d’étendre la première méthode après l’apparition de l’effet de peau. Cette dernière est enfin utilisée pour modéliser le comportement électromagnétique d’un boîtier de blindage réaliste. / The number of electronic devices and wireless communication systems has significantly increased over the past 20 years. Shielding enclosures used to protect electronic devices against radiated waves and to limit their emissions are usually designed in aluminum alloys. But the need to reduce the weight of aircraft incites the aerospace industry to the use of composite materials.Modeling shielding enclosures composed of homogeneous materials is possible by the use of numerical tools such as the finite element method. But considering every details of the microstructure would involve a excessive number of unknowns preventing numerical modelings. The use of semi-analytical homogenization methods is a possibility to overcome this restriction. The equivalent homogeneous mediums obtained with these methods can be inserted into numerical tools to simulate the electromagnetic behavior of complex shielding enclosures. But classical homogenization models such as Maxwell-Garnett model, are limited to quasi-static applications.Calculating the effective properties of composite materials illuminated by electromagnetic waves is the main objective of this work. This leads to two dynamic homogenization methods. The first one introduces a size effect between the fibers and the wavelength. It allows to extend a method based on inclusion problems to microwave frequencies. However it is limited by the occurrence of the skin effect in conductive inclusions. The second consider Joule losses and extends the first method after the occurrence of the skin effect. This second homogenization method is finally used to model the behavior of a realistic shielding enclosure.
8

Propagation des ultrasons en milieu hétérogène et anisotrope : application à l'évaluation des propriétés d'élasticité et d'atténuation d'aciers moules par centrifugation et de soudures en Inconel / Ultrasound propagation in anisotropic and heterogeneous media : application to evaluation the elastic properties and attenuation in steel centrifugally and Inconel welds

Bodian, Pape Arago 23 March 2011 (has links)
En sciences et dans l’industrie pour limiter le nombre de maquettes expérimentales dans les projets R&D afin de mieux comprendre et de bien interpréter les phénomènes ultrasonores complexes observés sur site, des simulations de contrôles ultrasonores sont effectuées. Ces simulations sont d’autant plus réalistes que la description des structures à contrôler est précise, en particulier au niveau des constantes d’élasticité et d’atténuation intrinsèque. Les objectifs de cette étude sont d’améliorer d’une part les connaissances sur l’influence des caractéristiques métallurgiques des matériaux anisotropes et hétérogènes sur la propagation ultrasonore et d’autre part les performances des codes de calcul (logiciel ATHENA d’EDF) qui nécessitent de disposer des données d’entrée pertinentes, notamment en ce qui concerne les constantes d’élasticité et l’atténuation ultrasonore. Cette étude est dédiée à la caractérisation des matériaux à gros grains, comme les aciers austéno-ferritiques moulés par centrifugation et les soudures en acier inoxydable austénitique ou en alliages à base nickel. Un système expérimental unique permettant de mesurer les constantes d’élasticité et l’atténuation en incidence oblique à été mis au point. Le point fort de ce dispositif est qu’il permet de travailler au-delà de l’angle critique longitudinal et donc de mesurer les propriétés d’atténuation des ondes transversales. Les constantes d’élasticité sont déduites des vitesses ultrasonores à partir d’un processus d’optimisation basé sur la résolution de problème inverse. Nous avons montré les potentialités d’algorithmes d’optimisation globaux tels que les algorithmes génétiques moins susceptibles de converger vers des minima locaux de la fonction à minimiser. Les résultats obtenus à partir des mesures expérimentales sont en accord avec la littérature. Des résultats de l’atténuation des ondes longitudinales et transversales par décomposition du faisceau en spectre d’ondes planes sont présentés. / In industry, to limit the number of experimental models in R&D projects, to better understand and to well interpret the complex ultrasonic phenomena observed du ring controls on site, simulations of ultrasonic controls are carried out. These simulations are all the more realistic as the description of structures to control is accurate, especially in terms of elastic constants, and intrinsic attenuation. The objectives of this study are firstly to improve knowledge about the influence of the metallurgical properties of anisotropie and heterogeneous materials on the ultrasonic propagation and secondly the performance of the computation codes (software ATHENA EDF) which need to have the relevant inputs, particularly as regards the elastic constants and ultrasonic attenuation. This study is dedicated to the characterization of coarse materials such as austenitic-ferritic steel centrifugally cast and the welding in steel austenitic stainless or in alloy nickel-based. A unique experimental system for measuring the elastic constants and attenuation at oblique incidence has been developed. The strong point of this device is that it can work beyond the longitudinal critical angle and thus to measure the attenuation properties of transversal waves. The elastic constants are deduced from ultrasonic speed from an optimization process based on the resolution of Inverse problems. We have shown the potential of global optimization algorithms such as genetic algorithms Jess likely to converge to local minima of the function to minimize. The results obtained from experimental measurements are in agreement with literature. Results of the attenuation of the longitudinal and transverse waves by beam decomposition into spectrum of plane waves are represented.
9

Modélisation micromécanique de milieux poreux hétérogènes et applications aux roches oolithiques / Micromechanical Modelling of Heterogenous Porous Materials with Application to Oolitic Rocks

Chen, Fengjuan 24 October 2016 (has links)
La problématique suivie dans ce travail est la détermination des propriétés effectives, élastiques et conductivité, de matériaux poreux hétérogènes tels que des roches, les roches oolithiques en particulier, en relation avec leur microstructure. Le cadre théorique adopté est celui de l’homogénéisation des milieux hétérogènes aléatoires et on suit les approches par tenseurs d’Eshelby. Ces approches sont basées sur la résolution des problèmes d’Eshelby : le problème de l’inclusion (premier problème) et le problème de l’inhomogénéité (second problème) isolées dans un milieu infini. La solution de ces problèmes de référence est analytique, en élasticité linéaire isotrope et en diffusion linéaire stationnaire, dans le cas d’inhomogénéités 2D ou 3D de type ellipsoïde. Elle conduit à la définition de tenseurs caractérisant les interactions entre l’inclusion/inhomogénéité et le milieu environnant. On utilise dans ce travail les tenseurs de contribution relatifs à une inhomogénéité isolée, définis par Kachanov et Sevostianov 2013, contributions à la souplesse (élasticité) et à la résistivité (conductivité). Ces tenseurs au cœur des méthodes d’homogénéisation de type EMA (Effective Medium Approximation), et en particulier les schémas NIA (Non Interaction Approximation), Mori Tanaka et Maxwell. Ce travail est centré sur la caractérisation des paramètres géométriques microstructuraux dont l’influence sur les propriétés effectives est majeure. On étudie en particulier les effets de forme des inhomogénéités, la nouveauté est l’aspect 3D. Les observations microstructurales de roches oolithiques, dont le calcaire de référence de Lavoux, mettent en évidence des hétérogénéités de forme 3D et concave. En particulier les matériaux de remplissage inter-oolithes, pores ou calcite syntaxiale. Ces formes peuvent être observées sur d’autres matériaux hétérogènes et ont été peu étudiées dans le cadre micromécanique. Cela nécessite de considérer des formes non ellipsoïdales et de résoudre numériquement les problèmes d’Eshelby. Le cœur de ce travail est consacré à la détermination des tenseurs de contribution d’inhomogénéités 3D convexes ou concaves de type supersphère (à symétrie cubique) ou supersphéroïde (à symétrie de révolution). Le premier problème d’Eshelby a été résolu, dans le cas de la supersphère, par intégration numérique de la fonction de Green exacte (solution de Kelvin dans le cas isotrope) sur la surface de l’inclusion. Des modélisations 3D aux éléments finis ont permis de résoudre le second problème d’Eshelby et d’obtenir les tenseurs de contribution à la souplesse et à la résistivité pour les superphère et supersphéroïde. Sur la base des résultats numériques, des relations analytiques simplifiées ont été proposées pour les tenseurs de contribution sous forme de fonctions des paramètres élastiques des constituants et du paramètre adimensionnel p caractérisant la concavité. Un résultat important, dans le cas de la superphère et dans le domaine concave, est l’identification d’un même paramètre géométrique pour les tenseurs de contribution à la souplesse et à la résistivité. Les résultats numériques et théoriques obtenus sont appliqués à deux problèmes : l’estimation de la conductivité thermique effective de roches calcaires oolithiques d’une part et l’étude de l’extension des relations dites de substitution définies par Kachanov et Sevostianov 2007 au cas non ellipsoïdal d’autre part. Pour le premier problème, un modèle micromécanique de type Maxwell, à deux échelles a permis de retrouver les résultats expérimentaux disponibles dans la littérature, en en particulier l’influence de la porosité sur la conductivité thermique effective dans les cas sec et humide. Dans le cas du second problème, les résultats obtenus ont permis de montrer que la validité de relations de substitution est restreinte, dans le cas non ellipsoïdal et en considérant une forme d’inhomogénéité de type supersphère, au domaine convexe seulement / Focusing on the effect of shape factor on the overall effective properties of heterogeneous materials, the 1st and the 2nd Eshelby problem related to 3-D non-ellipsoidal inhomogeneities with a specific application to oolitic rocks have been discussed in the current work. Particular attention is focused on concaves shapes such as supersphere and superspheroid. For rocks, they may represent pores or solid mineral materials embbeded in the surrounding rock matrix. In the 1st Eshelby problem, Eshelby tensor interrelates the resulting strain about inclusion and eigenstrain that would have been experienced inside the inclusion without any external contraire. Calculations of this tensor for superspherical pores– both concave and convex shapes – are performed numerically. Results are given by an integration of derivation of Green’s tensor over volume of the inclusion. Comparisons with the results of Onaka (2001) for convex superspheres show that the performed calculations have an accuracy better than 1%. The current calculations have been done to complete his results. In the 2nd Eshelby problem, property contribution tensors that characterizes the contribution of an individual inhomogeneity on the overall physical properties have been numerically calculated by using Finite Element Method (FEM). Property contribution tensors of 3D non ellipsoidal inhomogeneities, such as supersphere and superspheroid, have been obtained. Simplified analytical relations have been derived for both compliance contribution tensor and resistivity contribution tensor. Property contribution tensors have been used to estimate effective elastic properties and effective conductivity of random heterogeneous materials, in the framework of Non-Interaction Approximation, Mori-Tanaka scheme and Maxwell scheme. Two applications in the field of geomechanics and geophysics have been done. The first application concerns the evaluation of the effective thermal conductivity of oolitic rocks is performed to complete the work of Sevostianov and Giraud (2013) for effective elastic properties. A two step homogenization model has been developed by considering two distinct classes of pores: microporosity (intra oolitic porosity) and meso porosity (inter oolitic porosity). Maxwell homogenization scheme formulated in terms of resistivity contribution tensor has been used for the transition from meso to macroscale. Concave inter oolitic pores of superspherical shape have been taken into account by using resistivity contribution tensor obtained thanks to FEM modelling. Two limiting cases have been considered: ‘dry case’ (air saturated pores) and ‘wet case’ (water liquid saturated pores). Comparisons with experimental data show that variations of effective thermal conductivity with porosity in the most sensitive case of air saturated porosity are correctly reproduced. Applicability of the replacement relations, initially derived by Sevostianov and Kachanov (2007) for ellipsoidal inhomogeneities, to non-ellipsoidal ones has been investigated. It it the second application of newly obtained results on property contribution tensors. We have considered 3D inhomogeneities of superspherical shape. From the results, it has been seen that these relations are valid only in the convex domain, with an accuracy better than 10%. Replacement relations can not be used in the concave domain for such particular 3D shape
10

Étude numérique méso-macro des propriétés de transfert des bétons fissurés / Meso-macro numerical study of the transfert properties of cracked concrete

Jourdain, Xavier 15 December 2014 (has links)
La durabilité des structures en béton est désormais intégrée dans la démarche de conception des ouvrages de Génie Civil. En effet, quel que soit le type de sollicitation (mécanique, thermique, hydrique) une fissuration est susceptible de se produire risquant d'impacter la durée de vie de l'ouvrage par la pénétration d'agents agressifs. L'aptitude au service peut elle-même être affectée pour les structures où une étanchéité est requise (enceinte de confinement de centrales nucléaires, réservoirs de gaz naturel liquéfié, barrages, stockages des déchets radioactifs ou de CO2, etc.). Dans ce contexte industriel, la prédiction du débit de fuite traversant des éléments composés de matériaux à base cimentaire est donc un enjeu scientifique et industriel majeur. Pour parvenir à cet objectif de simulation numérique, il est nécessaire de mettre en place un couplage hydro-mécanique. L'anisotropie de la fissuration induite par les sollicitations mécaniques complexes conduit à un tenseur de perméabilité macroscopique anisotrope. La détermination de ce tenseur est un enjeu important dans l'objectif de mener des calculs à l'échelle macroscopique avec des modèles phénoménologiques. De plus, les calculs de perméabilité sont un moyen de comparer les volumes fissurés obtenus par les différents modèles mécaniques. La modélisation de la fissuration pour les matériaux quasi-fragiles hétérogènes à l'échelle mésoscopique tels que le béton est complexe et suivant les approches utilisées, les résultats peuvent fortement varier. C'est pourquoi l'étude numérique proposée dans la thèse comporte une comparaison entre deux approches mécaniques : - une première basée sur une modélisation mécanique de type E-FEM (Embedded Finite Element Method) [Benkemoun et al., 2010] - - une seconde basée sur une modélisation mécanique d'endommagement [Mazars, 1984] régularisée en énergie de fissuration [Hillerborg et al., 1976]. Le travail numérique associé à cette thèse consiste donc à développer un modèle couplant de manière faible un modèle mécanique à un modèle de transfert en 3D à l'échelle mésoscopique. En se basant sur le concept de « double porosité », la perméabilité du milieu fissuré est vue comme la combinaison d'une perméabilité diffuse et isotrope (liée au réseau poreux initial du béton et à son degré de saturation) et d'une perméabilité « discrète » et orientée au sein des fissures (le calcul de cette dernière étant basé sur les ouvertures de fissures données par le modèle mécanique et sur les équations de la mécanique des Navier-Stokes en régime permanent). La comparaison des résultats obtenus sur différents résultats expérimentaux issus de la littérature (un tirant traversé par de l'eau [Desmettre et Charron, 2011] et un élément structurel traversé par de l'air sec [Nahas et al., 2014]) permet de comparer la pertinence des deux modèles mécaniques utilisés ainsi que l'approche utilisée pour estimer le débit traversant des éléments en béton fissurés. / The durability of concrete structures is nowadays fully integrated in the civil engineering constructions design process. Whatever the loading is (mechanical, thermic, hydric), cracks may appear and impact the structure lifespan by the infiltration of aggressive agents. The serviceability can be directly impacted for the structures playing an air/water tightness role (containment building nuclear power plants, liquefied natural gas storage tanks, dams, radioactive waste disposal, etc.). The prediction of the flow going through elements composed of a cementitious material is therefore a major scientific and industrial issue. To achieve this goal, a hydro-mechanical coupling must be implemented. The anisotropic cracking induced by complex mechanical loadings leads to an anisotropic macroscopic permeability tensor. This tensor computation is an important issue dealing with phenomenological models for macroscopic problems. The cracking modelling of quasi-brittle materials, heterogeneous at the mesoscopic scale like concrete, is complex and different mechanical approaches can lead to various results. Therefore, permeability calculations are an elegant way to examine cracking patterns obtained with several mechanical models. Consequently, this study compares two mechanical approaches: - the first one is based on an Embedded Finite Element Method (E-FEM) mechanical model [Benkemoun et al., 2010] - - the second one is based on a damage mechanical model [Mazars, 1984] regularised by the fracture energy of the material [Hillerborg et al., 1976]. This thesis presents a hydro-mechanical approach weakly coupling a mechanical model with a permeation model in 3D at the mesoscopic scale. This work is based on the “double porosity” concept splitting the permeability into two parts: the first one is isotropic and corresponds to flows within the porosity of the material- the second one, based upon a set of cracks with different orientations and openings, is anisotropic. For the latter, each crack is a path for mass flow according to the fluid laws considering two infinite planes. In order to check this approach relevance, numerical results are compared to experimental results extracted from the literature (an experiment where water goes through a specimen made of a steel reinforcing bar covered with concrete under load [Desmettre et Charron, 2011] and a device where dry air goes through a structural element made of reinforced concrete [Nahas et al., 2014]). The computation of the flow going to those cracked concrete elements helps to understand the presented approach efficiency and the differences between the two used mechanical models.

Page generated in 0.1214 seconds