Spelling suggestions: "subject:"heterophase 6polymerization"" "subject:"heterophase copolymerization""
1 |
Multiscale simulation of heterophase polymerization : application to the synthesis of multicomponent colloidal polymer particlesHernandez Garcia, Hugo Fernando January 2008 (has links)
Heterophase polymerization is a technique widely used for the synthesis of high performance polymeric materials with applications including paints, inks, adhesives, synthetic rubber, biomedical applications and many others. Due to the heterogeneous nature of the process, many different relevant length and time scales can be identified. Each of these scales has a direct influence on the kinetics of polymerization and on the physicochemical and performance properties of the final product. Therefore, from the point of view of product and process design and optimization, the understanding of each of these relevant scales and their integration into one single model is a very promising route for reducing the time-to-market in the development of new products, for increasing the productivity and profitability of existing processes, and for designing products with improved performance or cost/performance ratio.
The process considered is the synthesis of structured or composite polymer particles by multi-stage seeded emulsion polymerization. This type of process is used for the preparation of high performance materials where a synergistic behavior of two or more different types of polymers is obtained. Some examples include the synthesis of core-shell or multilayered particles for improved impact strength materials and for high resistance coatings and adhesives. The kinetics of the most relevant events taking place in an emulsion polymerization process has been investigated using suitable numerical simulation techniques at their corresponding time and length scales. These methods, which include Molecular Dynamics (MD) simulation, Brownian Dynamics (BD) simulation and kinetic Monte Carlo (kMC) simulation, have been found to be very powerful and highly useful for gaining a deeper insight and achieving a better understanding and a more accurate description of all phenomena involved in emulsion polymerization processes, and can be potentially extended to investigate any type of heterogeneous process. The novel approach of using these kinetic-based numerical simulation methods can be regarded as a complement to the traditional thermodynamic-based macroscopic description of emulsion polymerization. The particular events investigated include molecular diffusion, diffusion-controlled polymerization reactions, particle formation, absorption/desorption of radicals and monomer, and the colloidal aggregation of polymer particles.
Using BD simulation it was possible to precisely determine the kinetics of absorption/desorption of molecular species by polymer particles, and to simulate the colloidal aggregation of polymer particles. For diluted systems, a very good agreement between BD simulation and the classical theory developed by Smoluchowski was obtained. However, for concentrated systems, significant deviations from the ideal behavior predicted by Smoluchowski were evidenced. BD simulation was found to be a very valuable tool for the investigation of emulsion polymerization processes especially when the spatial and geometrical complexity of the system cannot be neglected, as is the case of concentrated dispersions, non-spherical particles, structured polymer particles, particles with non-uniform monomer concentration, and so on. In addition, BD simulation was used to describe non-equilibrium monomer swelling kinetics, which is not possible using the traditional thermodynamic approach because it is only valid for systems at equilibrium.
The description of diffusion-controlled polymerization reactions was successfully achieved using a new stochastic algorithm for the kMC simulation of imperfectly mixed systems (SSA-IM). In contrast to the traditional stochastic simulation algorithm (SSA) and the deterministic rate of reaction equations, instead of assuming perfect mixing in the whole reactor, the new SSA-IM determines the volume perfectly mixed between two consecutive reactions as a function of the diffusion coefficient of the reacting species. Using this approach it was possible to describe, using a single set of kinetic parameters, typical mass transfer limitations effects during a free radical batch polymerization such as the cage effect, the gel effect and the glass effect.
Using multiscale integration it was possible to investigate the formation of secondary particles during the seeded emulsion polymerization of vinyl acetate over a polystyrene seed. Three different cases of radical generation were considered: generation of radicals by thermal decomposition of water-soluble initiating compounds, generation of radicals by a redox reaction at the surface of the particles, and generation of radicals by thermal decomposition of surface-active initiators "inisurfs" attached to the surface of the particles. The simulation results demonstrated the satisfactory reduction in secondary particles formation achieved when the locus of radical generation is controlled close to the particles surface. / Eine der industriell am meisten verwendeten Methoden zur Herstellung von Hochleistungspolymeren ist die Heterophasenpolymerisation. Industriell von besonderer Bedeutung ist die sogenannte Saatemulsionspolymerisation bei der kleine Saatteilchen durch die sequentielle Zugabe von weiteren Monomeren gezielt modifiziert werden, um Kompositpolymerteilchen mit den gewünschten mechanischen und chemischen Gebrauchseigenschaften herzustellen. Ein häufig auftretendes Problem während dieser Art der Heterophasenpolymerisation ist die Bildung von neuen, kleinen Teilchen im Polymerisationsverlauf. Diese sogenannte sekundäre Teilchenbildung muss vermieden werden, da sie die Herstellung der gewünschten Teilchen mit den angestrebten Eigenschaften verhindert.
Ein spezieller Fall der Saatemulsionspolymerisation ist die Kombination von Vinylacetat als Monomer, das auf Saatteilchen aus Polystyrol polymerisieren soll. Die Unterdrückung der Teilchenneubildung ist in diesem Beispiel besonders schwierig, da Vinylacetat eine sehr hohe Wasserlöslichkeit besitzt.
In der vorliegenden Arbeit wurden zur Lösung der Aufgabenstellung verschiedene numerische Simulierungsalgorithmen verwendet, die entsprechend den charakteristischen Längen- und Zeitskalen der im Verlauf der Polymerisation ablaufenden Prozesse ausgewählt wurden, um die passenden Bedingungen für die Unterdrückung der sekundären Teilchenbildung zu finden. Die verwendeten numerischen Methoden umfassen Molekulare Dynamik Simulationen, die benutzt werden, um molekulare Bewegungen zu berechnen; Brownsche Dynamik Simulationen, die benutzt werden, um die zufälligen Bewegungen der kolloidalen Teilchen und der molekularen Spezies zu beschreiben, und kinetische Monte Carlo Simulationen, die das zufällige Auftreten von individuellen physikalischen oder chemischen Ereignissen modellieren.
Durch die Kombination dieser Methoden ist es möglich, alle für die Beschreibung der Polymerisation relevanten Phänomene zu berücksichtigen. Damit können nicht nur die Reaktionsgeschwindigkeit und die Produktivität des Prozesses simuliert werden sondern auch Aussagen bezüglich der physikalischen und chemischen Eigenschaften des Produktes sowie den Applikationseigenschaften getroffen werden.
In dieser Arbeit wurden zum ersten Mal Modelle für die unterschiedlichen Längen- und Zeitskalen bei Heterophasenpolymerisationen entwickelt und erfolgreich zur Modellierung des Prozesses angewendet. Die Ergebnisse führten zu bedeutenden Verbesserungen der Theorie von Emulsionspolymerisationen insbesondere für die Beschreibung des Massenaustausches zwischen den Phasen (bspw. Radikaleintritt in und Radikalaustritt aus die Polymerteilchen), der Bildung von neuen Teilchen, und der Polymerisationskinetik unter den heterogenen Reaktionsbedingungen mit uneinheitlicher Durchmischung.
|
Page generated in 0.1018 seconds