Spelling suggestions: "subject:"heterostruktur"" "subject:"meterostruktur""
31 |
Semimagnetic heterostructures for spintronics / Semimagnetische Heterostrukturen für SpintronikSlobodskyy, Taras January 2006 (has links) (PDF)
Für zukünftige Technologien ist die Erforschung von der verwendeten Teilchen nötig. Spintronik ist ein modernes Gebiet der Physik, welches neben der Ladung auch die Spineigenschaften als zus¨atzlichen Freiheitsgrad nutzbar macht. Der ”conductivity mismatch” stellt ein fundamentales Problem für elektrische Spininjektion aus einem ferromagnetischem Metal in einen diffusiven Halbleiter dar. Daher müssen andere Methoden für die Injektion spin-polarisierter Ladungsträger benutzt werden. Mit einem Tunnelkontakt ist es möglich, eine hoch spin-polarisierte, Raumtemperatur Tunnel-Injektion zu erzielen. Wir benutzten einen neuen Ansatz und verwendeten magnetische RTDs zur Spinmanipulation. In dieser Arbeit wurden die Eigenschaften von magnetischen, resonanten Tunneldioden (RTDs) aus rheinen II-VI-Halbleitern in ihrer Verwendung für die Spintronik beschrieben. Wachstumsbedingungen wurden optimiert, um das Peak-to-Valley-Verhältnis zu vergrößern. Das Design der RTDs wurde optimiert, um spinbezogene Transporteffekte beobachten zu könen. Mit einem externen Magnetfeld war Spinmanipulation möglich. Selbstorganisierte CdSe Quanten-Strukturen wurden hergestelt und mit optischen Techniken untersucht. Sie würden in (Zn,Be)Se Tunnelbarrieren eingebettet, so dass ihre Eigenschaften durch resonantes Tunneln zugänglich wurden. / In pursuit of a novel generation of devices, exploration of spin properties of the particles is needed. Spintronics is a modern field in physics which exploits spin properties to be used in addition to the charge degree of freedom. Since the conductivity mismatch problem presents a fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor [SFM+00], other means for injecting spin-polarized carriers must be used. With a tunnel contact, it is possible to achieve a highly spin-polarized room-temperature tunnel injection [JWS+05]. We used a novel approach and applied magnetic RTDs for spin manipulation. In this work, properties of all-II-VI magnetic resonant tunneling diodes (RTDs), as applied to spintronics, were reported. Growth conditions were optimized to increase the peak-to-valley ratio, and the design of the RTDs was optimized for observation of spin related transport effects. When an external magnetic field was applied, spin manipulation became possible. Selforganized CdSe quantum structures were grown and investigated using optical means. After embedding them into a (Zn,Be)Se tunneling barrier, the properties were assessed by the resonant tunneling.
|
32 |
Towards functional oxide heterostructures / Funktionelle oxidische HeterostrukturenMüller, Andreas January 2012 (has links) (PDF)
Oxide heterostructures attract a lot of attention as they display a vast range of physical phenomena like conductivity, magnetism, or even superconductivity. In most cases, these effects are caused by electron correlations and are therefore interesting for studying fundamental physics, but also in view of future applications. This thesis deals with the growth and characterization of several prototypical oxide heterostructures. Fe3O4 is highly ranked as a possible spin electrode in the field of spintronics. A suitable semiconductor for spin injection in combination with Fe3O4 is ZnO due to its oxide character and a sufficiently long spin coherence length. Fe3O4 has been grown successfully on ZnO using pulsed laser deposition and molecular beam epitaxy by choosing the oxygen partial pressure adequately. Here, a pressure variation during growth reduces an FeO-like interface layer. Fe3O4 films grow in an island-like growth mode and are structurally nearly fully relaxed, exhibiting the same lattice constants as the bulk materials. Despite the presence of a slight oxygen off-stoichiometry, indications of the Verwey transition hint at high-quality film properties. The overall magnetization of the films is reduced compared to bulk Fe3O4 and a slow magnetization behavior is observed, most probably due to defects like anti-phase boundaries originating from the initial island growth. LaAlO3/SrTiO3 heterostructures exhibit a conducting interface above a critical film thickness, which is most likely explained by an electronic reconstruction. In the corresponding model, the potential built-up owing to the polar LaAlO3 overlayer is compensated by a charge transfer from the film surface to the interface. The properties of these heterostructures strongly depend on the growth parameters. It is shown for the first time, that it is mainly the total pressure which determines the macroscopic sample properties, while it is the oxygen partial pressure which controls the amount of charge carriers near the interface. Oxygen-vacancy-mediated conductivity is found for too low oxygen pressures. A too high total pressure, however, destroys interface conductivity, most probably due to a change of the growth kinetics. Post-oxidation leads to a metastable state removing the arbitrariness in controlling the electronic interface properties by the oxygen pressure during growth. LaVO3/SrTiO3 heterostructures exhibit similar behavior compared to LaAlO3/SrTiO3 when it comes to a thickness-dependent metal-insulator transition. But in contrast to LaAlO3, LaVO3 is a Mott insulator exhibiting strong electron correlations. Films have been grown by pulsed laser deposition. Layer-by-layer growth and a phase-pure pervoskite lattice structure is observed, indicating good structural quality of the film and the interface. An electron-rich layer is found near the interface on the LaVO3 side for conducting LaVO3/SrTiO3. This could be explained by an electronic reconstruction within the film. The electrostatic doping results in a band-filling-controlled metal-insulator transition without suffering from chemical impurities, which is unavoidable in conventional doping experiments. / Oxidische Heterostrukturen besitzen verschiedenste physikalische Eigenschaften wie Leitfähigkeit, Magnetisums oder sogar Supraleitung. Diese Effekte, die meist von elektronischen Korrelationen verursacht werden, zu verstehen und ihren fundamentalen Ursprung zu erklären, machen diese Materialsysteme ebenso interessant wie ihr zukünftiges Anwendungspotential. Diese Arbeit beschäftigt sich mit verschiedenen prototypischen Schichtsystemen. Fe3O4 könnte zukünftig als Spinelektrode im Bereich der Spintronik dienen. ZnO ist ein Halbleiter, der durch seinen oxidischen Charakter und einer hinreichenden Spinkohärenzlänge gut zur Spininjektion geeignet ist. Das Wachstum von Fe3O4 auf ZnO wurde erfolgreich mittels gepulster Laserdeposition und Molekularstrahlepitaxie durchgeführt. Dabei ist der Sauerstoffpartialdruck entscheidend und eine Variation des Drucks während des Wachstums wirkt der Bildung einer FeO-artigen Grenzschicht entgegen. Die Filme wachsen inselartig und ihre Gitterstruktur ist fast vollständig relaxiert. Trotz einer Sauerstofffehlstöchiometrie wird die hohe Qualität der Filme durch einen Verwey-Phasenübergang bestätigt. Im Vergleich zu Einkristallen ist die Magnetisierung der Filme reduziert. Durch das Inselwachstum verursachte Antiphasengrenzen könnten zu dieser Reduzierung führen. Die leitfähige Grenzschicht, die in LaAlO3/SrTiO3 Heterostrukturen ab einer bestimmten LaAlO3 Filmdicke auftritt, kann höchstwahrscheinlich durch eine elektronische Rekonstruktion erklärt werden. Im entsprechenden Modell wird der Aufbau eines elektrischen Potentials auf Grund der Polarität des LaAlO3 Films durch eine Ladungsumordnung kompensiert. Die Eigenschaften dieser Heterostruktur sind jedoch von den Wachstumsparametern abhängig. Diese Studie zeigt erstmals, dass die makroskopischen Eigenschaften maßgeblich vom Gesamtdruck, die Anzahl der Ladungsträger dagegen stark vom Sauerstoffpartialdruck während des Wachstums abhängen. Leitfähigkeit auf Grund von Sauerstofffehlstellen wurde für sehr kleine Sauerstoffpartialdrücke beobachtet. Ein zu hoher Gesamtdruck hingegen verhindert die Leitfähigkeit der Grenzschicht. Dies ist vermutlich durch eine Änderung der Wachstumskinematik erklärbar. Ein Nachoxidieren der Proben führt überdies zu einem metastabilen Zustand, der die Vergleichbarkeit von Proben verschiedener Arbeitsgruppen gewährleistet. LaVO3/SrTiO3 zeigt ähnliches Verhalten wie LaAlO3/SrTiO3 und Leitfähigkeit tritt ab einer gewissen LaVO3 Schichtdicke auf. Im Gegensatz zu LaAlO3 ist LaVO3 ein Mottisolator, dass heißt, Korrelationseffekte spielen eine Rolle. LaVO3/SrTiO3 wurde mittels gepulster Laserdeposition hergestellt, Phasenreinheit und die strukturellen Eigenschaften mit verschiedenen Methoden überprüft. Zusätzliche Elektronen wurden für leitfähige Proben auf der LaVO3-Seite der Grenzfläche nachgewiesen. Eine Erklärung hierfür wäre eine elektronische Rekonstruktion im Film selbst. Dieses elektrostatische Dotieren führt zu einem bandfüllungsinduzierten Mott-Phasenübergang, der nicht durch chemische Verunreinigungen, die in konventionellen Dotierexperimenten unvermeidbar sind, beeinflusst ist.
|
33 |
Micromagnetic Sensors and Dirac Fermions in HgTe Heterostructures / Mikromagnetische Sensoren und Dirac Fermionen in HgTe HeterostrukturenBüttner, Bastian January 2012 (has links) (PDF)
Within the scope of this thesis two main topics have been investigated: the examination of micromagnetic sensors and transport of massive and massless Dirac fermions in HgTe quantum wells. For the investigation of localized, inhomogeneous magnetic fields, the fabrication and characterization of two different non-invasive and ultra sensitive sensors has been established at the chair ”Experimentelle Physik” of the University of Würzburg. The first sensor is based on the young technique named micro-Hall magnetometry. The necessary semiconductor devices (Hall cross structures) were fabricated by high-resolution electron beam lithography based on two different two dimensional electron gases (2DEGs), namely InAs/(Al,Ga)Sb- and HgTe/(Hg,Cd)Te- heterostructures. The characteristics have been examined in two different ways. Measurements in homogeneous magnetic fields served for characterization of the sensors, whereas the investigation of artificially produced sub-µm magnets substantiates the suitability of the devices for the study of novel nanoscale magnetic materials (e.g. nanowires). Systematic experiments with various magnets are in accordance with the theory of single-domain particles and anisotropic behavior due to shapes with high aspect ratio. The highest sensitivity for strongly localized fields was obtained at T = 4.2 K for a (200x200) nm^2 Hall cross - made from shallow, high mobility HgTe 2DEG. Although the field resolution was merely δB ≈ 100 µT, the nanoscale sensor size yields an outstanding flux resolution of δΦ = 2 10^(−3) Φ0, where Φ0 = h/2e is the flux quantum. Translating this result in terms of magnetic moment, the sensitivity allows for the detection of magnetization changes of a particle centered on top of the sensor as low as δM ≈ 10^2 µB, with the magnetic moment of a single electron µB, the Bohr magneton. The further examination of a permalloy nanomagnet with a cross-section of (100x20) nm^2 confirms the expected resolution ability, extracted from the noise of the sensor. The observed high signal-to-noise ratio validates the detection limit of this sensor in terms of geometry. This would be reached for a magnet (same material) with quadratic cross-section for an edge length of 3.3 nm. Moreover, the feasibility of this sensor for operation in a wide temperature range (T = mK... > 200 K) and high magnetic fields has been confirmed. The second micromagnetic sensor is the micro-SQUID (micro-Superconducting-QUantum-Interference-Device) based on niobium. The typical sensor area of the devices built in this work was (1.0x1.0) µm^2, with constrictions of about 20 nm. The characterization of this device demonstrates an amazing field sensitivity (regarding its size) of δB < 1 µT. Even though the sensor was 25 times larger than the best micro-Hall sensor, it provided an excellent flux resolution in the order of δΦ ≈ 5 10^(−4) Φ0 and a similar magnetic moment resolution of δM ≈ 10^2 µB. Furthermore, the introduction of an ellipsoidal permalloy magnet (axes: 200 nm and 400 nm, thickness 30 nm) substantiates the suitability for the detection of minuscule, localized magnetic fields. The second part of the thesis deals with the peculiar transport properties of HgTe quantum wells. These rely on the linear contribution to the band structure inherent to the heterostructure. Therefore the system can be described by an effective Dirac Hamiltonian, whose Dirac mass is tunable by the variation of the quantum well thickness. By fabrication and characterization of a systematical series of substrates, a system with vanishing Dirac mass (zero energy gap) has been confirmed. This heterostructure therefore resembles graphene (a monolayer of graphite), with the difference of exhibiting only one valley in the energy dispersion of the Brillouin zone. Thus parasitical intervalley scattering cannot occur. The existence of this system has been proven by the agreement of theoretical predictions, based on widely accepted band structure calculations with the experiment (Landau level dispersion, conductivity). Furthermore, another particularity of the band structure - the transition from linear to parabolic character - has been illustrated by the widths of the plateaus in the quantum Hall effect. Finally, the transport of ”massive” Dirac fermions (with finite Dirac mass) is investigated. In particular the describing Dirac Hamiltonian induces weak localization effects depending on the Dirac mass. This mechanism has not been observed to date, and survives in higher temperatures compared to typical localization mechanisms. / Im Rahmen dieser Arbeit wurden zwei Themenbereiche bearbeitet: die Untersuchung von mikromagnetischen Sensoren und der Transport von massiven und masselosen Dirac Fermionen in HgTe Quantenwällen. Für die Untersuchung von lokalisierten, inhomogenen Magnetfeldern wurde die Herstellung und Charakterisierung von zwei unterschiedlichen nicht-invasiven und hochempfindlichen Sensoren am Lehrstuhl für Experimentelle Physik III der Universität Würzburg etabliert. Der erste Sensor beruht auf der noch recht jungen Methode der Mikro-Hall-Magnetometrie. Die dafür notwendigen Halbleiterbauteile (Hallkreuzstrukturen) wurden mit höchstauflösender Elektronenstrahllithografie auf Basis von zwei verschiedenen zweidimensionalen Elektronengasen (2DEGs) hergestellt, genauer InAs/(Al,Ga)Sb- und HgTe/(Hg,Cd)Te- Halbleiterheterostrukturen. Nachfolgend wurden deren Charakteristika auf zwei verschiedene Arten untersucht. Messungen in homogenen Magnetfeldern dienten der Charakterisierung der Sensoren, während die Untersuchung von künstlich hergestellten sub-Mikrometermagneten die Eignung der Bauteile für die Detektion neuartiger magnetischer Materialien auf der Nanoskala (z.B. Nanodrähte) nachweist. Systematische Messungen an Magneten unterschiedlicher Ausdehnungen stimmen mit theoretischen Vorausbetrachtungen in Bezug auf Einzeldomänenteilchen und Formanisotropie überein. Die höchste Empfindlichkeit für stark lokalisierte Magnetfelder wurde mit einem (200x200)nm^2 großen Hallkreuz - hergestellt aus einem oberflächennahen, hochbeweglichen HgTe 2DEG - bei einer Temperatur von 4.2 K erreicht. Obwohl die Feldauflösung lediglich δB ≈ 100 µT betrug, konnte auf Grund der Miniaturisierung der Sensorfläche eine beeindruckende Flusssensitivität von δΦ ≈ 2 10^(−3) Φ0 erreicht werden, wobei Φ0 = h/2e das Flussquant darstellt. Wenn man diese Auflösung in Bezug auf die Magnetisierung betrachtet, ermöglicht der Sensor die Detektion von Magnetisierungsänderungen eines Teilchens auf der Mitte des Sensors in Höhe von δM ≈ 10^2 µB mit dem magnetischen Moment eines Elektrons, dem Bohrschen Magneton µB. Die weiteren Untersuchungen eines Permalloy-Nanomagneten mit einer Querschnittfläche von (100x20) nm^2 bestätigt die erwartete Auflösungsfähigkeit, die aus dem Rauschen des Sensors hervorgeht. Weiterhin konnte die Einsatzfähigkeit des Bauteils in einem breiten Temperaturbereich (T = mK... > 200 K) und bei hohen Magnetfeldern bestätigt werden. Bei dem zweiten mikromagnetischen Sensor handelt es sich um das Mikro-SQUID (Mikro-Superconducting-QUantum-Interference-Device) basierend auf Niob. Die Sensorfläche der in dieser Arbeit hergestellten Mikro-SQUIDs betrug typischerweise (1.0x1.0) µm^2 mit Einschnürungen im Bereich von 20 nm. Die Charakterisierung dieses Bauteils zeigt eine beeindruckende Magnetfeldauflösung von δB < 1 µT, besonders hinsichtlich der minimalen Ausdehnung des Bauteils. Obwohl die Sensorfläche 25 mal größer als die des Mikro-Hallsensors war, wurde so eine höhere Flusssensitivität von δΦ ≈ 5 10^(−4) Φ0 und eine ähnliche magnetische Momentauflösung von δM ≈ 10^2 µB erreicht. Des weiteren konnte mit der Einbringung eines ellipsoidalen Permalloy-Magneten (Achsen: 200 und 400 nm, Dicke: 30 nm) die Eignung zur Detektion winziger lokaler Magnetfelder konkretisiert werden. Im zweiten Teil der Arbeit sind die besonderen Transporteigenschaften von HgTe Quantenwällen, die auf dem linearen Anteil in der Bandstruktur beruhen, untersucht worden. Das System kann mit einem Dirac Hamiltonian beschrieben werden, dessen Diracmasse durch Variation der Quantenwalldicke beeinflusst werden kann. Im Verlauf der Arbeit konnte durch Herstellung und Charakterisierung einer systematischen Serie von Substraten ein System mit verschwindender Diracmasse (Energielücke gleich 0) bestätigt werden. Diese Halbleiterheterostruktur gleicht damit Graphen (eine Monolage von Graphit), mit dem Unterschied, dass es in der Brillouinzone nur eine Elektronensenke aufweist und demzufolge keine störende Intervalley-Streuung auftreten kann. Die Existenz dieses Systems konnte durch die Übereineinstimmung von Vorhersagen aus theoretischen Bandstrukturrechnungen mit dem Experiment (Verlauf der Landauniveaus, Leitfähigkeit) bestätigt werden. Außerdem konnte die Besonderheit der Bandstruktur - der Übergang von linearem zu quadratischem Charakter - anhand der Plateauweiten im Quanten-Hall-Effekt veranschaulicht werden. Im weiteren Verlauf wurde der Transport von ”massiven” Dirac Fermionen (mit endlicher Diracmasse) untersucht. Im Besonderen führt der beschreibende Dirac Hamiltonian in Abhängigkeit von der Diracmasse zu schwachen Lokalisierungeffekten, die bis dato noch nicht beobachtet wurden und im Vergleich zu typischen Mechanismen bis zu weit höheren Temperaturen überleben.
|
34 |
Spin-Dependent Tunneling and Heterovalent Heterointerface Effects in Diluted Magnetic II-VI Semiconductor Heterostructures / Spinabhängiges Tunneln und heterovalente Heterogrenzflächen in verdünnt magnetischen II-VI Halbleiter HeterostrukturenFrey, Alexander January 2011 (has links) (PDF)
The contribution of the present thesis consists of three parts. They are centered around investigating certain semiconductor heterointerfaces relevant to spin injection, exploring novel, diluted magnetic single barrier tunneling structures, and further developing diluted magnetic II-VI resonant tunneling diodes. / Der Beitrag der vorliegenden Arbeit besteht aus drei Teilen. Diese beschäftigen sich mit der Untersuchung bestimmter, für Spininjektion relevanter, Halbleiter Heterogrenzflächen, mit neuartigen, verdünnt magnetischen Einzelbarrieren-Tunnelstrukturen, sowie mit der Weiterentwicklung von verdünnt magnetischen Resonanz-Tunneldioden.
|
35 |
Hot spin carriers in cold semiconductors : Time and spatially resolved magneto-optical Kerr effect spectroscopy of optically induced electron spin dynamics in semiconductor heterostructures / Heiße Spinträger in kalten HalbleiternHenn, Tobias January 2014 (has links) (PDF)
The present thesis “Hot spin carriers in cold semiconductors” investigates hot carrier effects in low-temperature photoinduced magneto-optical Kerr effect (MOKE) microscopy of electron spins in semiconductor heterostructures. Our studies reveal that the influence of hot photocarriers in magneto-optical pump-probe experiments is twofold.
First, it is commonly assumed that a measurement of the local Kerr rotation using an arbitrary probe wavelength maps the local electron spin polarization. This is the fundamental assumption that underlies the widely used two-color MOKE microscopy technique. Our continuous-wave (cw) spectroscopy experiments demonstrate that this assumption is not correct.
At low lattice temperatures the nonresonant spin excitation by the focused pump laser inevitably leads to a strong heating of the electron system. This heating, in turn, locally modifies the magneto-optical coefficient which links the experimentally observed Kerr rotation to the electron spin polarization. As a consequence, the spin-induced local Kerr rotation is augmented by spin-unrelated changes in the magneto-optical coefficient. A spatially resolved measurement of the Kerr rotation then does not correctly map the electron spin polarization profile.
We demonstrate different ways to overcome this limitation and to correctly measure the electron spin profile. For cw spectroscopy we show how the true local electron spin polarization can be obtained from a quantitative analysis of the full excitonic Kerr rotation spectrum. Alternatively, picosecond MOKE microscopy using a spectrally broad probe laser pulse mitigates hot-carrier effects on the magneto-optical spin detection and allows to directly observe the time-resolved expansion of optically excited electron spin packets in real-space.
Second, we show that hot photocarriers strongly modify the spin diffusion process. Owing to their high kinetic energy, hot carriers greatly enhance the electron spin diffusion coefficient with respect to the intrinsic value of the undisturbed system. Therefore, for steady-state excitation the spin diffusivity is strongly enhanced close to the pump spot center where hot electrons are present. Similarly, for short delays following pulsed excitation the high initial temperature of the electrons leads to a very fast initial expansion of the spin packet which gradually slows as the electrons cool down to the lattice temperature.
While few previous publications have recognized the possible influence of hot carriers on the electron spin transport properties, the present work is the first to directly observe and quantify such hot carrier contributions. We develop models which for steady-state and pulsed excitation quantitatively describe the experimentally observed electron spin diffusion. These models are capable of separating the intrinsic spin diffusivity from the hot electron contribution, and allow to obtain spin transport parameters of the undisturbed system.
We perform extensive cw and time-resolved spectroscopy studies of the lattice temperature dependence of the electron spin diffusion in bulk GaAs. Using our models we obtain a consistent set of parameters for the intrinsic temperature dependence of the electron spin diffusion coefficient and spin relaxation time and the hot carrier contributions which quantitatively describes all experimental observations. Our analysis unequivocally demonstrates that we have, as we believe for the first time, arrived at a coherent understanding of photoinduced low-temperature electron spin diffusion in bulk semiconductors. / Die vorliegende Arbeit untersucht den Einfluss heißer Ladungsträger in pump-probe magneto-optischer Kerr-Effekt (MOKE) Tieftemperatur-Mikroskopie-Messungen der optisch induzierten Elektronenspin-Dynamik in Galliumarsenid-basierten Halbleiterheterostrukturen. Die Arbeit zeigt, dass dieser Einfluss von zweierlei Art ist.
Der erste Aspekt betrifft die magneto-optische Elektronenspin-Detektion. Es wird gewöhnlich angenommen, dass eine Messung der lokalen Kerr-Rotation unter Verwendung einer beliebigen Probelaser-Wellenlänge korrekt die lokale Elektronenspinpolarisation abbildet. Diese Prämisse ist die fundamentale Grundlage der MOKE Elektronenspin-Mikroskopie. Unsere Dauerstrich-Spektroskopie-Ergebnisse belegen, dass diese Annahme im Allgemeinen nicht korrekt ist.
Bei tiefen Gittertemperaturen führt die nichtresonante optische Anregung spinpolarisierter Elektronen zu einer signifikanten Heizung des Elektronensystems. Diese Heizung modifiziert lokal den magneto-optischen Koeffizienten, der die im Experiment beobachtete Kerr-Rotation mit der zu messenden Elektronenspinpolarisation verknüpft. Als Konsequenz ist die spininduzierte lokale Kerr-Rotation von spinunabhängigen Änderungen des der magneto-optischen Koeffizienten überlagert. Eine ortsaufgelöste Messung der Kerr-Rotation bildet dann im Allgemeinen nicht korrekt die lokale Elektronenspinpolarisation ab.
Wir demonstrieren verschiedene Möglichkeiten, diese Einschränkung zu überwinden und das korrekte Elektronenspin-Profil zu bestimmen. Für Dauerstrich-Anregung zeigen wir, dass das Elektronenspin-Profil korrekt durch eine quantitative Analyse des lokalen exzitonischen Kerr-Rotations-Spektrums ermittelt werden kann. Alternativ minimiert Pikosekunden-zeitaufgelöste MOKE Mikroskopie unter Verwendung eines spektral breiten gepulsten Probelasers den Einfluss heißer Elektronen auf die magneto-optische Spin-Detektion und erlaubt die direkte Beobachtung der diffusiven Ausbreitung optisch erzeugter Elektronenspin-Pakete im Realraum.
Als zweites Hauptergebnis zeigen wir, dass optische angeregte heiße Ladungsträger signifikant die Spindiffusion beeinflussen. Durch ihre hohe kinetischen Energie erhöhen heiße Photoladungsträger stark den Elektronenspin-Diffusionskoeffizienten im Vergleich zum intrinsischen Wert des ungestörten Systems. Aus diesem Grund ist bei tiefen Gittertemperaturen für lokale Dauerstrich-Anregung der Spin-Diffusionskoeffizient in der Nähe des fokussierten Pumplaserstrahls, in der heiße Elektronen vorhanden sind, stark erhöht. Analog führt für kurze Zeiten nach gepulster optischer Anregung die hohe anfängliche Elektronentemperatur zu einer sehr schnellen initialen Ausbreitung des Spin-Paktes, welche sich allmählich verlangsamt, während die Elektronen auf die Gittertemperatur abkühlen.
Während einzelne frühere Arbeiten bereits den möglichen Einfluss heißer Ladungsträger auf den Elektronenspin-Transport erkannten, ist die vorliegende Arbeit die erste, die die Wirkung heißer Träger auf die Elektronenspin-Diffusion direkt beobachtet und quantifiziert. Wir entwickeln verschiedene Modelle, die für gepulste und Dauerstrich-Anregung quantitativ die Elektronenspin-Diffusion beschreiben. Diese Modelle sind in der Lage, die intrinsische Spindiffusivität von den Beiträgen heißer Ladungsträger zu trennen und erlauben, die Spintransport-Eigenschaften des ungestörten Systems zu bestimmen.
Wir untersuchen in zeitaufgelösten und Dauerstrich-Anregungs-Experimenten die Gittertemperatur-Abhängigkeit der Spindiffusion in n-dotiertem Volumen-GaAs. Mit Hilfe unserer Modelle ermitteln wir einen konsistenten Parameter-Satz für die intrinsische Temperaturabhängigkeit der Spinrelaxationszeit und des Elektronenspin-Diffusionskoeffizienten sowie der Beiträge heißer Ladungsträger, der quantitativ alle experimentellen Beobachtungen beschreibt. Damit haben wir erstmals ein kohärentes Verständnis der optisch induzierten Tieftemperatur-Elektronenspin-Diffusion in Halbleitern entwickelt.
|
36 |
Controlling structural and magnetic properties of epitaxial NiMnSb for application in spin torque devices / Anpassung der strukturellen und magnetischen Eigenschaften von epitaktischem NiMnSb in Hinsicht auf die Anwendung in Spin Drehmoment BauteilenGerhard, Felicitas Irene Veronika January 2014 (has links) (PDF)
This thesis describes the epitaxial growth of the Half-Heusler alloy NiMnSb by molecular beam epitaxy. Its structural and magnetic properties are controlled by tuning the composition and the resulting small deviation from stoichiometry. The magnetic in-plane anisotropy depends on the Mn concentration of the sample and can be controlled in both strength and orientation. This control of the magnetic anisotropy allows for growing NiMnSb layers of a given thickness and magnetic properties as requested for the design of NiMnSb-based devices. The growth and characterization of NiMnSb-ZnTe-NiMnSb heterostructures is presented - such heterostructures form an all-NiMnSb based spin-valve and are a promising basis for spin torque devices. / Diese Arbeit beschreibt das epitaktische Wachstum der Halb-Heusler Legierung NiMnSb mittels Molekularstrahl Epitaxie. Durch Abstimmen der Zusammensetzung und einer daraus folgenden geringen Abweichung der Stöchiometrie werden die strukturellen und magnetischen Eigenschaften gesteuert. Die magnetische Anisotropie hängt von der Mn Konzentration der Probe ab, wobei sowohl die Stärke als auch die Orientierung der Anisotropie angepasst werden kann. Die Kontrolle der magnetischen Anisotropie erlaubt das Wachstum von NiMnSb Schichten mit gegebener Dicke und magnetischen Eigenschaften, die für das Design von NiMnSb-basierten Bauteilen erforderlich sind. Das Wachstum und die Charakterisierung von NiMnSb-ZnTe-NiMnSb Heterostrukturen wird präsentiert - solche Heterostrukturen bilden ein rein NiMnSb-basiertes Spinventil und sind eine vielversprechende Basis für Spin Drehmoment Bauteile.
|
37 |
Spektroskopie und hochauflösende Mikroskopie zur Analyse der Grenzflächeneigenschaften in SrTiO\(_3\)-basierten Heterostrukturen / Interface properties of SrTiO\(_3\)-based heterostructures studied by spectroscopy and high-resolution microscopyPfaff, Florian Georg January 2016 (has links) (PDF)
> In oxidischen Heterostrukturen kann es zur Ausbildung unerwarteter elektronischer und magnetischer Phasen kommen. Ein bekanntes Beispiel ist das Heterostruktursystem LaAlO\(_3\)/SrTiO\(_3\), an dessen Grenzfläche ein zweidimensionalen Elektronensystem (2DES) entsteht, sofern die LaAlO\(_3\)-Filmdicke einen kritischen Wert von mindestens vier Einheitszellen aufweist. Ähnliches Verhalten konnte an der Heterostruktur γ-Al\(_2\)O\(_3\)/SrTiO\(_3\) beobachtet werden. Die gemessenen Elektronenbeweglichkeiten und Flächenladungsträgerdichten übertreffen hierbei die in LaAlO\(_3\)/SrTiO\(_3\) um mehr als eine Größenordnung. Die vorliegende Arbeit beschäftigt sich mit der Herstellung sowie der Analyse dieser beiden Heterostruktursysteme. Die Hauptaspekte sind dabei die Untersuchung der physikalischen Eigenschaften an der Grenzfläche sowie das Verständnis der zugrundeliegenden Mechanismen.
>
> Im Hinblick auf das Wachstum wird demonstriert, dass die für LaAlO\(_3\)/SrTiO\(_3\) etablierte Wachstumsroutine der gepulsten Laserablation sowie die zur Überwachung des Schichtwachstums verwendete Methode der Beugung hochenergetischer Elektronen in Reflexion (RHEED) für das γ-Al\(_2\)O\(_3\)-Wachstum modifiziert werden müssen. So kann gezeigt werden, dass durch eine geeignete Variation der Wachstumsgeometrie die Resonanz von Oberflächenwellen, welche im Falle des γ-Al\(_2\)O\(_3\)-Wachstums die Beobachtung von RHEED-Oszillationen erschwert, vermieden werden kann und somit auch hier die Überwachung des heteroepitaktischen Schichtwachstum mittels Elektronenbeugung möglich wird.
>
> Für die Ausbildung des 2DES in LaAlO\(_3\)/SrTiO\(_3\) wird das Szenario der elektronischen Rekonstruktion als mögliche Ursache diskutiert, wonach das divergierende Potential innerhalb des polaren LaAlO\(_3\)-Films durch einen Ladungstransfer von der Probenoberfläche in die obersten Atomlagen des unpolaren SrTiO\(_3\)-Substrats kompensiert wird. Zudem sind die Eigenschaften der Heterostruktur von den Wachstumsparametern abhängig. So wird in der vorliegenden Arbeit eine deutliche Zunahme der Ladungsträgerkonzentration und der räumliche Ausdehnung der leitfähigen Schicht insbesondere für Proben, welche bei sehr niedrigen Sauerstoffhintergrunddrücken gewachsen wurden, gezeigt und auf die Erzeugung von Sauerstofffehlstellen innerhalb des Substrats zurückgeführt. Darüber hinaus wird erstmalig die Herstellung atomar scharfer Grenzflächen mit sehr geringer Defektdichte selbst bei sehr niedrigen Wachstumsdrücken belegt und erstmals auch direkt elektronenmikroskopisch nachgewiesen. Es werden allenfalls vernachlässigbare Effekte der Sauerstoffkonzentration auf charakteristische, strukturelle Merkmale der Probe beobachtet. Desweiteren zeigt diese Arbeit erstmalig eine von den Wachstumsbedingungen abhängige Gitterverzerrung des Films, was in Übereinstimmung mit Rechnungen auf Basis der Dichtefunktionaltheorie einen Hinweis auf ein komplexes Zusammenspiel von elektronischer Rekonstruktion, Sauerstofffehlstellen an der LaAlO\(_3\)-Oberfläche und einer Verzerrung der Kristallstruktur als Ursache für die Entstehung des 2DES in LaAlO\(_3\)/SrTiO\(_3\) liefert.
>
> Neben der mikroskopischen Analyse des 2DES in LaAlO\(_3\)/SrTiO\(_3\) wird die elektronische Struktur dieses Systems zudem mithilfe der resonanten inelastischen Röntgenstreuung charakterisiert. Die vorliegende Dissertation zeigt dabei, neben dem Nachweis lokalisierter Ladungsträger vor dem Einsetzen metallischen Verhaltens ab einer kritischen Schichtdicke von vier Einheitszellen, die Existenz eines Raman- und eines fluoreszenzartigen Signals in Abhängigkeit der verwendeten Photonenenergie, was wiederum auf einen unterschiedlichen elektronischen Charakter im Zwischenzustand zurückgeführt werden kann. Gestützt wird diese Interpretation durch vergleichbare Messungen an γ- Al\(_2\)O\(_3\)/SrTiO\(_3\). In diesem System finden sich zudem ebenfalls Anzeichen lokalisierter Ladungsträger unterhalb der kritischen Schichtdicke für metallisches Verhalten, was ein Hinweis auf einen mit LaAlO\(_3\)/SrTiO\(_3\) vergleichbaren Grundzustand sein könnte.
>
> Weitere Messungen mithilfe der resonanten Photoelektronenspektroskopie ermöglichen zudem eine direkte Beobachtung und Analyse der Ti 3d-Valenzelektronen. Messungen an LaAlO\(_3\)/SrTiO\(_3\) und γ-Al\(_2\)O\(_3\)/SrTiO\(_3\) liefern dabei Hinweise auf verschiedene elektronische Ti 3d-artige Zustände. Diese werden zum einen den mobilen Ladungsträgern des 2DES zugeschrieben, zum anderen als lokalisierte Elektronen in der Nähe von Sauerstofffehlstellen identifiziert. Eine Analyse des Resonanzverhaltens sowie der spektralen Form der beobachteten Signale zeigt quantitative Unterschiede, was auf einen unterschiedlichen treibenden Mechanismus in beiden Systemen hindeutet und im Hin- blick auf den Einfluss von Sauerstofffehlstellen auf das System diskutiert wird. Zudem zeigen impulsaufgelöste Messungen der Zustände am chemischen Potential eine unterschiedliche Intensitätsverteilung im k -Raum. Dies wird im Zusammenhang mit Matrixelementeffekten diskutiert und kann vermutlich auf Photoelektronendiffraktion bedingt durch die unterschiedliche Kristallstruktur des Filmmaterials, zurückgeführt werden. / > Oxide heterostructures can exhibit a variety of unexpected electronic and magnetic phenomena at their interfaces. A prominent example is the interface in LaAlO\(_3\)/SrTiO\(_3\) heterostructures where a two-dimensional electron system (2DES) forms if the LaAlO\(_3\) thickness equals or exceeds a critical thickness of four unit cells. Similar to LaAlO\(_3\)/SrTiO\(_3\) an interface 2DES above a critical overlayer thickness has been observed in γ-Al\(_2\)O\(_3\)/SrTiO\(_3\). However, the electron mobility as well as the sheet carrier density exceed those of LaAlO\(_3\)/SrTiO\(_3\) heterostructures by more than one order of magnitude. This thesis is concerned with the growth and the characterization of these two types of interface systems with the main focus on the analysis of the physical properties at the interface and the understanding of their leading mechanisms.
>
> In regard to the sample fabrication it is demonstrated in the present thesis that the hitherto established growth routine of LaAlO\(_3\)/SrTiO\(_3\) by pulsed laser deposition has to be altered and optimized for the growth of γ-Al\(_2\)O\(_3\). It is shown that growth monitoring by analyzing reflection high energy electron diffraction (RHEED)intensity oscillations is hindered by the formation of surface wave resonances. In order to avoid this effect, a modified growth geometry has to be used whereby also in this heterostructucture systems monitoring of the layer-by-layer growth of γ-Al\(_2\)O\(_3\)/SrTiO\(_3\) heterostructures by electron diffraction can be achieved.
>
> A so-called electronic reconstruction is discussed as the possible driving mechanism for the 2DES formation in LaAlO\(_3\)/SrTiO\(_3\). In this scenario, the built-up potential within the polar LaAlO\(_3\) overlayer is compensated by a charge transfer from the sample surface to the top most layers of the non-polar SrTiO\(_3\) substrate. Furthermore, the properties of these heterostructures strongly depend on the used growth conditions. In the present work, for instance, a significant increase in the charge carrier concentration as well as the 2DES spatial extension can be observed for samples grown at very low oxygen pressures, which is related to the creation of oxygen vacancies in SrTiO\(_3\) substrate. It is microscopically shown for the first time that sharp interfaces with a very low density of defects can also be grown at very low oxygen partial pressures. In addition, no significant effect of oxygen vacancies on specific structural properties is seen. Furthermore, a detailed analysis of the atomic spacing reveales a lattice distortion within the LaAlO\(_3\) film which shows a significant dependence on the used growth parameters and, supported by density functional theory, points towards a complex interplay of electronic reconstruction, surface oxygen vacancies and lattice distortions as the driving mechanism for the 2DES formation.
>
> Beside the study of the structural properties of the interface in LaAlO\(_3\)/SrTiO\(_3\) heterostructures by means of transmission electron microscopy, the electronic structure of the 2DES is analyzed by resonant inelastic x-ray scattering (RIXS) measurements which show clear indications for localized charge carriers below the critical thickness for conductivity of four unit cells. Moreover, a Raman- and a fluorescence-like signal can be identified by excitation energy dependent RIXS and attributed to the electronic character of the intermediate state. Similar results are obtained on γ-Al\(_2\)O\(_3\)/SrTiO\(_3\) heterostructures which fortifies this interpretation and could be a hint for a similar ground state in both heterostructures and interface magnetism also to be present in this system.
>
> By using resonant photoelectron spectroscopy the Ti 3d valence electrons can directly be observed and analyzed. Comparative measurements on LaAlO\(_3\)/SrTiO\(_3\) and γ-Al\(_2\)O\(_3\)/SrTiO\(_3\) indicate the existence of different types of electronic states with Ti 3d character in both systems which can be attributed to mobile carriers forming the 2DES and carriers localized in states adjacent to oxygen vacancies. By analyzing the resonance behavior of the electronic states and their relative intensities and spectral shape substantial differences are revealed which point to a different mechanism at play for forming the 2DES in LaAlO\(_3\)/SrTiO\(_3\) and γ-Al\(_2\)O\(_3\)/SrTiO\(_3\). These observations are discussed in terms of the influence of oxygen vacancies on the two interface systems. Additionally, momentum-resolved measurements are performed to resolve the metallic states at the chemical potential and to map out the Fermi surface of LaAlO\(_3\)/SrTiO\(_3\) and γ-Al\(_2\)O\(_3\)/SrTiO\(_3\). Here, significantly different intensity distributions in k -space are observed and discussed with respect to matrix element effects while the results can most likely be ascribed to photoelectron diffraction due to the different crystal structure of the overlayer material
|
38 |
Untersuchungen zur Interrandkanal- und Hyperfeinwechselwirkung im Quanten-Hall-EffektWürtz, Alida Simone January 2007 (has links)
Zugl.: Duisburg, Essen, Univ., Diss., 2007
|
39 |
Organic inorganic interfaces for applications in organic electronicsSellner, Stefan. January 2006 (has links)
Stuttgart, Univ., Diss., 2005.
|
40 |
Interaction of superconductivity and ferromagnetism in YBCO-LCMO heterostructuresSoltan, Soltan January 2005 (has links) (PDF)
Zugl.: Stuttgart, Univ., Diss., 2005
|
Page generated in 0.3115 seconds