Spelling suggestions: "subject:"heterotaxy"" "subject:"hetrotaxy""
1 |
Establishing the Embryonic Axes: Prime Time for Teratogenic InsultsSadler, Thomas W. 11 September 2017 (has links)
A long standing axiom in the field of teratology states that the teratogenic period, when most birth defects are produced, occurs during the third to eighth weeks of development post-fertilization. Any insults prior to this time are thought to result in a slowing of embryonic growth from which the conceptus recovers or death of the embryo followed by spontaneous abortion. However, new insights into embryonic development during the first two weeks, including formation of the anterior-posterior, dorsal-ventral, and left-right axes, suggests that signaling pathways regulating these processes are prime targets for genetic and toxic insults. Establishment of the left-right (laterality) axis is particularly sensitive to disruption at very early stages of development and these perturbations result in a wide variety of congenital malformations, especially heart defects. Thus, the time for teratogenic insults resulting in birth defects should be reset to include the first two weeks of development.
|
2 |
The Genetics of Heterotaxy SyndromeCowan, Jason R. January 2015 (has links)
No description available.
|
3 |
Molecular Genetic Analysis of CRELD1 in Patients with Heterotaxy DisorderZhian, Samaneh 01 January 2011 (has links)
Heterotaxy refers to the abnormal arrangement of internal organs in relation to each other. Model organism studies have shown that functions of more than eighty genes are required for normal asymmetric left-right organ development. CRELD1 has been shown to be necessary for proper heart development and mutations in CRELD1 are known to increase risk of cardiac atrioventricular septal defects (AVSD). AVSD is the most common form of heart defect associated with heterotaxy, and we have previously shown that some individuals with heterotaxy-related AVSD have mutations in CRELD1. Therefore, we propose to examine the CRELD1 gene in a large sample of patients with heterotaxy syndrome. Our goal was to determine if mutations in CRELD1 are associated with other manifestations of heterotaxy or if they only coincide with AVSD. To achieve this aim, a sample size of 126 patients with heterotaxy collected by Dr. Belmont, Baylor college of Medicine, Texas, with approximately 66% of the heterotaxy population with different types of heart defects, were used for this study. Ten exons, promoter regions, and regulatory elements in the introns of CRELD1 gene were sequenced and analyzed. In this study three different heterozygous missense mutations in CRELD1 were identified in three unrelated individuals. These three individuals were diagnosed with different forms of heart defects in addition to AVSD. All three mutations were identified in highly conserved regions of CRELD1 possibly altering the CRELD1 properties. This demonstrates that mutations in CRELD1 may increase the susceptibility of AVSD in heterotaxy population. This information can help us to find factors effecting disease susceptibility in heterotaxy patients since the heart defects are a complex trait with incomplete penetrance.
|
4 |
Exceptionally Preserved Fossils from Some “Ordinary” Ordovician and Devonian Sedimentary Deposits of the Midwestern United StatesVayda, Prescott James January 2021 (has links)
No description available.
|
5 |
Identification des bases moléculaires et étude physiopathologique de maladies cardiaques rares en pédiatrie / Identification of molecular basis and physiopathology of rare cardiac diseases in peadiatricsGuimier, Anne 27 September 2016 (has links)
Les maladies rares sont définies en Europe par une prévalence inférieure à 1/2 000 cas et représentent plus de 7000 entités différentes dont 80% sont d’origine génétique. La majorité est de début pédiatrique. J’ai réalisé l’étude de cas familiaux rares avec récurrence dans la fratrie de cardiopathies congénitales avec hétérotaxie (défaut de latéralité gauche/droite) d’une part, et de mort subite cardiaque inexpliquée chez le nourrisson ou en période néonatale d’autre part. La stratégie d’identification de gène par séquençage de l’exome au sein de ces familles dans l’hypothèse d’une transmission autosomique récessive a permis d’identifier trois gènes et d’en étudier deux sur le plan fonctionnel dans différents modèles : 1) Perte de fonction de MMP21 et malformations cardiaques congénitales par anomalie de latéralité embryonnaire. MMP21 code pour une métallopeptidase matricielle dont nous démontrons le rôle très spécifique au niveau du nœud embryonnaire sur un modèle poisson zèbre et souris. Ceci ouvre de nouvelles perspectives dans la compréhension des mécanismes moléculaires qui sous-tendent la mise en place de l’asymétrie gauche/droite chez la plupart des vertébrés. De manière intéressante, alors que tous les mammifères ont le cœur latéralisé à gauche, tous n’ont pas un gène MMP21 codant. Il existe donc plusieurs voies de signalisation de l’asymétrie gauche/droite chez les vertébrés. 2) Mutations hypomorphes de PPA2 et mort subite cardiaque chez le nourrisson. PPA2 code pour une pyrophosphatase mitochondriale et les données chez la levure ont montré que la fonction de cette enzyme était essentielle au fonctionnement mitochondrial. Nous décrivons une nouvelle présentation clinique de maladie mitochondriale responsable de décès par arrêt cardiaque inattendu chez le nourrisson. 3) Perte de fonction de PLCD3 et cardiomyopathie foudroyante par apoptose et nécrose diffuse des cardiomyocytes en période néonatale. Ce résultat nécessite encore d’être confirmé par l’identification d’autres cas mais la fonction de la protéine et des données chez la souris sont des arguments majeurs en faveur de la causalité du gène. Au total, ces travaux sont déterminants à la fois sur le plan clinique dans le cadre du conseil génétique pour les familles concernées et sur le plan fondamental en éclairant les mécanismes biologiques de mise en place de l’axe gauche-droit au cours du développement embryonnaire avec MMP21, sur le rôle essentiel de PPA2 dans la mitochondrie et sur celui de PLCD3 dans la survie des cardiomyocytes en postnatal. / Rare diseases are defined in Europe by a prevalence of less than 1/2,000 individuals and represent more than 7,000 different diseases of which 80% are genetic. Most have a paediatric onset. My project involved the study of rare cardiac disorders in familial cases with recurrence in siblings, focusing on congenital heart disease in the context of heterotaxia (laterality defects) and sudden unexpected death due to cardiac arrest in infancy and the neonatal period. Whole exome sequencing was used as a tool for disease gene discovery in these families with the hypothesis of autosomal recessive inheritance. This strategy led to the identification of 3 novel disease genes. I performed functional validation for two of these genes in different models, confirming their involvement in each disease. 1) Loss of function of MMP21 and cardiac malformations due to left-right patterning defects during embryonic development. MMP21 encodes a metallopeptidase for which I demonstrated a highly specialized role in the generation of left-right asymmetry at the node using zebrafish. This gives new insight into the molecular mechanisms at the origin of left-right asymmetry in vertebrates. Interestingly, all mammals have a left-sided heart, but some species have lost the Mmp21 gene, indicating that there are different pathways leading to left-right determination in vertebrates. 2) Hypomorphic mutations in PPA2 cause sudden cardiac arrest in infants. PPA2 is a nuclear gene encoding the mitochondrial pyrophosphatase and using a yeast model we showed that this enzyme is essential for the mitochondrial energy transducing system and biogenesis. I described a novel clinical spectrum for a mitochondrial disease responsible for unexpected cardiac arrest in infancy. 3) PLCD3 loss of function and fatal cardiomyopathy by cardiomyocyte apoptosis and necrosis in neonates. Exome sequencing in one familial case with 2 siblings presenting fatal cardiomyopathy led to the identification of compound heterozygous mutations in PLCD3, a gene previously implicated in a similar pathology in a mouse model. Identification of further cases with mutations in this gene will be needed in order to confirm the role of PLCD3 in the disease. In total, these studies are crucial from a clinical point of view for the genetic counseling of the affected families and they contribute to the elucidation of biological mechanisms of embryonic development and left-right determination (MMP21), mitochondrial function (PPA2) and post-natal cardiomyocyte survival (PLCD3).
|
6 |
Left-Sided Liver and Right Sided Polysplenia: A 77-Year-Old Patient With Hetrotaxy SyndromeBrahmbhatt, Parag, Barad, Bhavesh, Panchal, Mehul, Bhavsar, Vedang, Atif, Saleem, Klosterman, Lance 01 January 2014 (has links)
Hetrotaxy syndrome is defined as an abnormality where the internal thoraco-abdominal organs demonstrate abnormal arrangement across the left-right axis of the body. Although it is a known condition among physicians taking care of pediatric patients, it is rarely seen in adult day-to-day medicine and most physicians involved in care of adult patients are unaware of it. It is important to recognize this anomaly based on clinical findings,due to its reported association with various medical conditions. We report a case of a 77-year-old patient diagnosed with Hetrotaxy syndrome.
|
Page generated in 0.0334 seconds