• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude du mécanisme de la sensation du flux ciliaire dans l'organiseur droite gauche du poisson zèbre / Zebrafish left-right organizer : multi-scale analysis of cilia behaviors and flow-sensing mechanism for symmetry-breaking

Rua Ferreira, Rita 31 March 2017 (has links)
Les cils motiles et statiques jouent d’importants rôles dans la détermination de l’axe gauche-droite (GD) qui, en général, est mis en place par l’intermédiaire de flux directionnels générés dans des structures spécialisées appelées organisateurs gauche-droite (OGD). C’est ce point clé du développement qui dictera une organogenèse asymétrique. Dans mon projet de thèse, nous avons développé une méthode, appelée 3D-Cilia Map, et analysé l’organisation tridimensionnelle de l’implantation des cils afin d’extraire les paramètres clés responsables de la mise en place du flux directionnel et par conséquent de l’asymétrie GD. En résumé, nos résultats suggèrent qu’un mécanisme de signalisation chimique serait le plus plausible pour induire la rupture de la symétrie GD. Plus tard, les cellules réguleront intrinsèquement l’orientation asymétrique des cils à leur surface. Le travail présenté ici contribue de façon importante à nos connaissances actuelles concernant le comportement des cils et les mécanismes de sensation des flux dans l’établissement de l’axe gauche droite au sein de l’organisateur gauche-droite du poisson zèbre. / Both motile and immotile cilia play important roles in left-right (LR) axis determination, which generally involves cilia-mediated directional flows in organized structures (LR organizers, LRO) in which the LR symmetry is broken, thus driving asymmetric organogenesis in the developing embryos. In my PhD project we aimed to developed a method (3D-Cilia Map) and analyze the three-dimensional organization of ciliary implantation in order to extract the key parameters modulating the directional flow involved in breaking the axis of symmetry in the zebra fish LRO. Altogether, our results suggest the initial mechanism to break the LR symmetry is most likely to be based on the transport of achemical signal, while later, cells intrinsically provide their cilia the cues to orient asymmetrically. The work presented here represents an important contribution to our current understanding of cilia behaviors and flow-sensing mechanisms in the establishment of the left-right axis in the zebra fish LRO.
2

Identification des bases moléculaires et étude physiopathologique de maladies cardiaques rares en pédiatrie / Identification of molecular basis and physiopathology of rare cardiac diseases in peadiatrics

Guimier, Anne 27 September 2016 (has links)
Les maladies rares sont définies en Europe par une prévalence inférieure à 1/2 000 cas et représentent plus de 7000 entités différentes dont 80% sont d’origine génétique. La majorité est de début pédiatrique. J’ai réalisé l’étude de cas familiaux rares avec récurrence dans la fratrie de cardiopathies congénitales avec hétérotaxie (défaut de latéralité gauche/droite) d’une part, et de mort subite cardiaque inexpliquée chez le nourrisson ou en période néonatale d’autre part. La stratégie d’identification de gène par séquençage de l’exome au sein de ces familles dans l’hypothèse d’une transmission autosomique récessive a permis d’identifier trois gènes et d’en étudier deux sur le plan fonctionnel dans différents modèles : 1) Perte de fonction de MMP21 et malformations cardiaques congénitales par anomalie de latéralité embryonnaire. MMP21 code pour une métallopeptidase matricielle dont nous démontrons le rôle très spécifique au niveau du nœud embryonnaire sur un modèle poisson zèbre et souris. Ceci ouvre de nouvelles perspectives dans la compréhension des mécanismes moléculaires qui sous-tendent la mise en place de l’asymétrie gauche/droite chez la plupart des vertébrés. De manière intéressante, alors que tous les mammifères ont le cœur latéralisé à gauche, tous n’ont pas un gène MMP21 codant. Il existe donc plusieurs voies de signalisation de l’asymétrie gauche/droite chez les vertébrés. 2) Mutations hypomorphes de PPA2 et mort subite cardiaque chez le nourrisson. PPA2 code pour une pyrophosphatase mitochondriale et les données chez la levure ont montré que la fonction de cette enzyme était essentielle au fonctionnement mitochondrial. Nous décrivons une nouvelle présentation clinique de maladie mitochondriale responsable de décès par arrêt cardiaque inattendu chez le nourrisson. 3) Perte de fonction de PLCD3 et cardiomyopathie foudroyante par apoptose et nécrose diffuse des cardiomyocytes en période néonatale. Ce résultat nécessite encore d’être confirmé par l’identification d’autres cas mais la fonction de la protéine et des données chez la souris sont des arguments majeurs en faveur de la causalité du gène. Au total, ces travaux sont déterminants à la fois sur le plan clinique dans le cadre du conseil génétique pour les familles concernées et sur le plan fondamental en éclairant les mécanismes biologiques de mise en place de l’axe gauche-droit au cours du développement embryonnaire avec MMP21, sur le rôle essentiel de PPA2 dans la mitochondrie et sur celui de PLCD3 dans la survie des cardiomyocytes en postnatal. / Rare diseases are defined in Europe by a prevalence of less than 1/2,000 individuals and represent more than 7,000 different diseases of which 80% are genetic. Most have a paediatric onset. My project involved the study of rare cardiac disorders in familial cases with recurrence in siblings, focusing on congenital heart disease in the context of heterotaxia (laterality defects) and sudden unexpected death due to cardiac arrest in infancy and the neonatal period. Whole exome sequencing was used as a tool for disease gene discovery in these families with the hypothesis of autosomal recessive inheritance. This strategy led to the identification of 3 novel disease genes. I performed functional validation for two of these genes in different models, confirming their involvement in each disease. 1) Loss of function of MMP21 and cardiac malformations due to left-right patterning defects during embryonic development. MMP21 encodes a metallopeptidase for which I demonstrated a highly specialized role in the generation of left-right asymmetry at the node using zebrafish. This gives new insight into the molecular mechanisms at the origin of left-right asymmetry in vertebrates. Interestingly, all mammals have a left-sided heart, but some species have lost the Mmp21 gene, indicating that there are different pathways leading to left-right determination in vertebrates. 2) Hypomorphic mutations in PPA2 cause sudden cardiac arrest in infants. PPA2 is a nuclear gene encoding the mitochondrial pyrophosphatase and using a yeast model we showed that this enzyme is essential for the mitochondrial energy transducing system and biogenesis. I described a novel clinical spectrum for a mitochondrial disease responsible for unexpected cardiac arrest in infancy. 3) PLCD3 loss of function and fatal cardiomyopathy by cardiomyocyte apoptosis and necrosis in neonates. Exome sequencing in one familial case with 2 siblings presenting fatal cardiomyopathy led to the identification of compound heterozygous mutations in PLCD3, a gene previously implicated in a similar pathology in a mouse model. Identification of further cases with mutations in this gene will be needed in order to confirm the role of PLCD3 in the disease. In total, these studies are crucial from a clinical point of view for the genetic counseling of the affected families and they contribute to the elucidation of biological mechanisms of embryonic development and left-right determination (MMP21), mitochondrial function (PPA2) and post-natal cardiomyocyte survival (PLCD3).

Page generated in 0.1075 seconds