• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Function and Activation Mechanism of PLEKHG2, A Novel G Beta Gamma-Activated RhoGEF in Leukemia Cells

Runne, Caitlin M. 01 July 2013 (has links)
The Rho family of GTPases plays a crucial role in the regulation of diverse cellular processes, including proliferation and actin cytoskeletal rearrangement to promote cell migration. However, dysregulation of RhoGTPases has been associated with disease, particularly cancers such as leukemia. Despite this, RhoGTPases are rarely mutated in cancer. Rather, dysregulation of their regulatory proteins through mutation or overexpression contributes to disease pathogenesis. RhoGTPases are activated through Rho guanine nucleotide exchange factors (GEFs). Although over eighty RhoGEFs have been identified that activate the 25 RhoGTPases, the pathological role of the majority of these proteins remains unclear. Further, whereas the majority of RhoGEFs are activated through tyrosine phosphorylation, a small subset can be activated through heterotrimeric G proteins, including through GΒ;Γ; subunits. However, the mechanism by which GΒ;Γ; induces RhoGEF activation remains unclear. PLEKHG2 is a Dbl family RhoGEF that was originally identified as a gene upregulated in a leukemia mouse model, and later shown to be activated by heterotrimeric G protein Β;Γ; subunits. However, its function and activation mechanisms remain elusive. Here we show that, as compared to primary human T cells, the expression of PLEKHG2 is upregulated in leukemia cell lines. Downregulation of PLEKHG2 by siRNAs specifically inhibited GΒ;Γ;-stimulated Rac and Cdc42, but not RhoA activation. Consequently, inhibition of PLEKHG2 blocked actin polymerization, protrusion formation, and leukemia cell migration in response to SDF1alpha;. Additional studies indicate that GΒ;Γ; likely activates PLEKHG2 by binding the N-terminus of PLEKHG2. This interaction results in the release of autoinhibition imposed by the C-terminus within a region encompassing the catalytic DH domain. As a result, overexpressing either the N-terminus of PLEKHG2 that binds GΒ;Γ; or the C-terminus that autoinhibits PLEKHG2 blocked GΒ;Γ;-stimulated Rac and Cdc42 activation and the ability of leukemia cell to form membrane protrusions and to migrate. Together, our results have demonstrated that PLEKHG2 functions as a novel GΒ;Γ; -stimulated RhoGEF that could contribute to chemokine-induced leukemia cell dissemination and leukemia pathogenesis.
2

Rôle du dimère Gbetagamma dans l’organisation des systèmes de signalisation cellulaire

Robitaille, Mélanie 11 1900 (has links)
Selon le modèle classique, le signal reçu par les récepteurs couplés aux protéines G (RCPG) se propage suite à des interactions transitoires et aléatoires entre les RCPGs, les protéines G et leurs effecteurs. Par les techniques de transfert d’énergie de résonance de bioluminescence (BRET), de complémentation bimoléculaire de protéines fluorescentes (BiFC) et de co-immunoprécipitation, nous avons observé que les récepteurs, les protéines G et les effecteurs forment un complexe stable, avant et après l’activation des récepteurs. L’interaction entre l’effecteur Kir3 et le dimère Gbetagamma se produit initialement au réticulum endoplasmique et est sensible à un agoniste liposoluble des récepteurs beta2-adrénergiques. Bien que peu de spécificité pour les nombreux isoformes des sous-unités Gbetagamma ait été observée pour l’activation du canal Kir3, les interactions précoces au RE sont plus sensibles aux différentes combinaisons de Gbetagamma présentes. En plus de son rôle dans la régulation des effecteurs, le dimère Gbetagamma peut interagir avec de nombreuses protéines possédant des localisations cellulaires autres que la membrane plasmique. Nous avons identifié une nouvelle classe de protéines interagissant avec la sous-unité Gbeta, autant en système de surexpression que dans des extraits de cerveaux de rats, soit les protéines FosB et cFos, qui forment le complexe de transcription AP-1, suite à leur dimérisation avec les protéines de la famille des Jun. La coexpression du dimère Gbetagamma réduit l’activité transcriptionnelle du complexe AP-1 induit par le phorbol 12-,myristate 13-acetate (PMA), sans toutefois interférer avec la formation du complexe Fos/Jun ou son interaction avec l’ADN. Toutefois, le dimère Gbetagamma colocalise au noyau avec le complexe AP-1 et recrute les protéines histones déacétylases (HDAC) afin d’inhiber l’activité transcriptionnelle du complexe AP-1. / Based on the classical model of G protein activation, signal transduction occurs by transient and random interactions between the receptor, the G protein and the effectors. Bioluminescence resonance energy transfer (BRET), bimolecular fluorescence complementation assay (BiFC) and co-immunoprecipitation experiments revealed that receptor, heterotrimeric G proteins and effectors were found in stable complexes that persisted during signal transduction. Kir3 channel and Gbetagamma dimer interacts first in the endoplasmic reticulum (ER) and this interaction can be modulated by the membrane-permeable beta2-adrenergic agonist cimaterol. Little specificity has been reported for several isoforms of the Gbetagamma dimer in the activation of the Kir3 channel. However, we found that the “precocious” interaction in the ER is sensitive to the presence of different combination of Gbeta and Ggamma subunits. Recently, a number of new proteins, which are not classical effectors at the plasma membrane have been shown to interact with GbetagammaThese include histone deacetylases 4 and 5 (HDAC)[1, 2] and the glucocorticoid receptor. We identified a novel interaction between Gbetagamma subunit and the Fos proteins, which form the transcription factor AP-1 following their dimerization with Jun proteins. Gbetagamma and Fos interactions can be detected in HEK 293 cells overexpressing the two proteins as well as in brains from rats pre-treated with amphetamine. Gbetagamma/Fos interaction favours the nuclear translocation of Gbetagamma dimer and inhibits AP-1 transcriptional activity. Gbetagamma did not block Fos/Jun dimerization or the interaction of AP-1 with DNA but recruited HDACs to the AP-1 complex.
3

Rôle du dimère Gbetagamma dans l’organisation des systèmes de signalisation cellulaire

Robitaille, Mélanie 11 1900 (has links)
Selon le modèle classique, le signal reçu par les récepteurs couplés aux protéines G (RCPG) se propage suite à des interactions transitoires et aléatoires entre les RCPGs, les protéines G et leurs effecteurs. Par les techniques de transfert d’énergie de résonance de bioluminescence (BRET), de complémentation bimoléculaire de protéines fluorescentes (BiFC) et de co-immunoprécipitation, nous avons observé que les récepteurs, les protéines G et les effecteurs forment un complexe stable, avant et après l’activation des récepteurs. L’interaction entre l’effecteur Kir3 et le dimère Gbetagamma se produit initialement au réticulum endoplasmique et est sensible à un agoniste liposoluble des récepteurs beta2-adrénergiques. Bien que peu de spécificité pour les nombreux isoformes des sous-unités Gbetagamma ait été observée pour l’activation du canal Kir3, les interactions précoces au RE sont plus sensibles aux différentes combinaisons de Gbetagamma présentes. En plus de son rôle dans la régulation des effecteurs, le dimère Gbetagamma peut interagir avec de nombreuses protéines possédant des localisations cellulaires autres que la membrane plasmique. Nous avons identifié une nouvelle classe de protéines interagissant avec la sous-unité Gbeta, autant en système de surexpression que dans des extraits de cerveaux de rats, soit les protéines FosB et cFos, qui forment le complexe de transcription AP-1, suite à leur dimérisation avec les protéines de la famille des Jun. La coexpression du dimère Gbetagamma réduit l’activité transcriptionnelle du complexe AP-1 induit par le phorbol 12-,myristate 13-acetate (PMA), sans toutefois interférer avec la formation du complexe Fos/Jun ou son interaction avec l’ADN. Toutefois, le dimère Gbetagamma colocalise au noyau avec le complexe AP-1 et recrute les protéines histones déacétylases (HDAC) afin d’inhiber l’activité transcriptionnelle du complexe AP-1. / Based on the classical model of G protein activation, signal transduction occurs by transient and random interactions between the receptor, the G protein and the effectors. Bioluminescence resonance energy transfer (BRET), bimolecular fluorescence complementation assay (BiFC) and co-immunoprecipitation experiments revealed that receptor, heterotrimeric G proteins and effectors were found in stable complexes that persisted during signal transduction. Kir3 channel and Gbetagamma dimer interacts first in the endoplasmic reticulum (ER) and this interaction can be modulated by the membrane-permeable beta2-adrenergic agonist cimaterol. Little specificity has been reported for several isoforms of the Gbetagamma dimer in the activation of the Kir3 channel. However, we found that the “precocious” interaction in the ER is sensitive to the presence of different combination of Gbeta and Ggamma subunits. Recently, a number of new proteins, which are not classical effectors at the plasma membrane have been shown to interact with GbetagammaThese include histone deacetylases 4 and 5 (HDAC)[1, 2] and the glucocorticoid receptor. We identified a novel interaction between Gbetagamma subunit and the Fos proteins, which form the transcription factor AP-1 following their dimerization with Jun proteins. Gbetagamma and Fos interactions can be detected in HEK 293 cells overexpressing the two proteins as well as in brains from rats pre-treated with amphetamine. Gbetagamma/Fos interaction favours the nuclear translocation of Gbetagamma dimer and inhibits AP-1 transcriptional activity. Gbetagamma did not block Fos/Jun dimerization or the interaction of AP-1 with DNA but recruited HDACs to the AP-1 complex.
4

Étude à l'échelle moléculaire des protéines-G couplées à leurs récepteurs. / Molecular scale study of G-proteins coupled to the their receptors.

Louet, Maxime 21 November 2012 (has links)
Les protéines-G hétérotrimériques, constituées des sous-unités α, β et γ, sont les premières actrices de la transduction du signal en interagissant directement avec les Récepteurs Couplés aux protéines-G (RCPG). Les protéines-G ont la capacité de lier soit une molécule de GDP lorsqu'elles sont inactives, soit une molécule de GTP quand elles sont activées par un RCPG. Cet échange de nucléotide va conduire à la dissociation de l'hétérotrimère avec d'une part la sous-unité α seule, et d'autre part le complexe βγ. Chacune de ces entités va ensuite propager le signal dans le compartiment intracellulaire. Les travaux effectués au cours de cette thèse ont pour but de mieux comprendre la dynamique des protéines-G hétérotrimériques et de leurs récepteurs par des techniques de mécanique moléculaire incluant la Dynamique Moléculaire (DM) et l'Analyse de Modes Normaux (AMN). Dans un premier temps une AMN nous a permis de décrire les possibles mouvements de larges amplitudes des protéine-G. Nous avons à l'occasion de cette étude mis au point une méthode de sélection de Modes Normaux (MN) pertinents que nous avons appelés modes représentatifs. Nous avons également développé une méthode d'extraction de ligand (ici le GDP) le long de ces MN. Ceci nous a permis de montrer qu'un mouvement concerté de toute la sous-unité α pouvait permettre l'ouverture de la poche et la sortie du GDP. Dans un deuxième temps, nous avons affiné nos résultats en reconstruisant des profils d'énergie libre le long de plusieurs chemins de sortie possibles pour le GDP. Ainsi nous avons pu proposer un mécanisme fin de sortie du ligand et plusieurs résidus clés impliqués dans cette sortie. Nous avons également étudié le processus de dissociation de l'hétérotrimère par la technique de la Dynamique Moléculaire Dirigée. Il a été possible, à l'issue de cette étude, de proposer un mécanisme à l'échelle moléculaire de la séparation des sous-unités α et βγ. Pour finir, nous avons également étudié le macro-complexe RCPG : protéine-G. Deux études traitent des mécanismes d'activation et de couplage des protéines-G à son récepteur. Nous avons notamment montré que l'hétérotrimère de protéine-G contraint très fortement les mouvements du récepteur. Un mouvement très largement retrouvé dans le complexe ainsi que dans plusieurs autres RCPGs dont les structures sont connues a été proposé comme étant le mouvement d'activation des RCPG une fois complexés à leurs protéines partenaires. / Heterotrimeric G-proteins, constituted of α, β and γ subunits are the first actresses of the intra-cellular signal transduction and interact directly with G-protein Coupled Receptors (GPCR). The heterotrimer is able to bind either a GDP molecule (inactive state) or a GTP molecule (active state). The nucleotide exchange is triggered by the interaction with an activated GPCR and leads to the dissociation of the whole heterotrimer into two independant entities : α and tightly bound βγ subunits. Both subunits further propagate the signal into the intracellular compartment. Goals of the present work were to better understand the mechanics of G-proteins and GPCR by combining several molecular mechanics techniques such as Molecular Dynamics (MD) and Normal Mode Analysis (NMA).Firstly, we described large amplitude motions of the whole G-protein heterotrimer. In this study we developped a method to select relevant Normal Modes (NM), we called representative NM. We also developped a method which consists to extract a ligand (in our case the GDP) out of its binding pocket along computed NM. With these two new methods, we showed that a concerted motion of the α subunit would promote the opening of the pocket and the release of the GDP.Secondly, to refine our results, we performed free energy profiles reconstructions along several putative exit pathways of the GDP. Thus, we proposed for the first time a fine-tuned mechanism of GDP exit at the molecular scale and putative key-residues. We proposed also a molecular scale mechanism for the dissociation of the heterotrimeric G-protein through the use of the Targeted Molecular Dynamics (TMD). Finally we were interested in the study of the GPCR:G-protein complex. We performed two studies related to the activation and to the coupling of the macro-complex. We showed that G-protein constrain drastically the GPCR motions. One over-represented motion in the complex that was also retrieved in other crystallized structures of several different GPCRs thus suggested that this motion could be the putative activation motion of a GPCR when complexed to its favorite protein partners.
5

Úloha proteinu NtRGS1 v buněčné signalizaci a regulaci růstu buněk tabákové linie BY-2. / Role of protein NtRGS1 in cell signaling and regulation of growth of tobacco BY-2 cell line.

Šonka, Josef January 2014 (has links)
5 Abstract The thesis is focused on the role of regulator of G-protein signaling NtRGS1 in control of growth and cell proliferation of tobacco cell line BY-2. The protein NtRGS1 is an important candidate for being plant G-protein coupled receptor. Heterotrimeric G-proteins are involved in key signaling mechanisms in eukaryotic cells. Basic principles of this type of signaling are well conserved between plants and animals and related higher taxa. Outstanding difference of plant G-protein system is altered enzymatic activity of Gα subunit of the G-protein heterotrimer. These alterations correlate with chimeric structure and function of investigated NtRGS1 protein. The interaction of Gα and NtRGS1 is absolutely essential for running of heterotrimeric G-protein signaling in plants. Truncated versions of NtRGS1 fused to GFP were crated in the aim of protein characterization. The truncated proteins were investigated in respect of analysis of the role of NtRGS1 domains in protein targeting. Dynamic changes in NtRGS1 and selected truncated versions induced by experimental application of nutrition, especially sugars were described. Expression if Gα and NtRGS1 were investigated simultaneously. Influence of modulation of Gα and NtRGS1 expression on growth parameters of tobacco cell line BY-2 were described. Key words:...
6

Étude moléculaire de la formation de complexes protéiques impliqués dans la signalisation des récepteurs couplés aux protéines G

Breton, Billy 05 1900 (has links)
La communication cellulaire est un phénomène important pour le maintien de l’homéostasie des cellules. Au court des dernières années, cette sphère de recherche sur la signalisation cellulaire a connue des avancées importantes au niveau de l’identification des acteurs principaux impliqués dans la reconnaissance extracellulaire des signaux, ainsi que la compréhension des voies de signalisation engagées par les cellules pour répondre aux facteurs extracellulaires. Malgré ces nouvelles informations, les diverses interrelations moléculaires entre les acteurs ainsi que les voies de signalisation cellulaire, demeurent mal comprises. Le transfert d’énergie de résonance de bioluminescence (BRET) permet la mesure d’interactions protéiques et peut être utilisé dans deux configurations, le BRET480-YFP (connu aussi comme le BRET1) et le BRET400-GFP (connu aussi en tant que BRET2). Suite à l’oxydation de son substrat, la luciférase de renilla peut transférer son énergie à une protéine fluorescente, uniquement si elles sont à proximité l’une de l’autre (≤100Å). La combinaison dans un seul essai des BRET480-YFP et BRET400-GFP, a permis de suivre trois paires d’interactions, sur une même population cellulaire. Par contre, l’utilisation de deux substrats pour la réaction de bioluminescence rend impossible la mesure simultanée des différents signaux de BRET, pour ce trois nouvelles configurations de BRET ont été mises au point en utilisant des nouvelles protéines fluorescentes. Ainsi deux des nouvelles couleurs de BRET ayant des émissions résolues, le BRET400-BFP et le BRET400mAmetrine ont pu être combinées pour mesurer l’engagement par un RCPG d’une protéine G, ainsi que l’accumulation du second messager. La combinaison de ces BRET a également permis de révéler la formation d’un complexe entre le récepteur α2A adrénergique (α2AAR), Gαi1, le dimère Gβγ ainsi que la kinase des récepteurs couplés aux protéines G (GRK2), suite à l’activation du récepteur. De plus, seule l’entrée de GRK2 semble être en mesure de causer la désensibilisation du α2AAR, en s’intercalant entre Gαi1 et Gβγ. Par contre, la stabilisation de l’interaction entre α2AAR et la β-arrestine2 semble nécessiter l’activité kinase de GRK2. Une autre étude a révélé l’importance de différentes Gα pour la mobilisation du calcium, suite à l’activation du récepteur aux opioïdes de type delta (DOR). Suite à la surexpression de Gα de la famille Gαq, il a été possible de mesurer une influence de ces Gα sur la mobilisation du calcium. Toutefois, cette réponse calcique mesurée en présence des Gαq demeure sensible aux prétraitements à la toxine de Bordetella pertussis, qui inhibe sélectivement l’activité des Gαi. De plus, la co-expression de Gαi et Gαq permet de potentialiser la mobilisation de calcium, démontrant une interrelation entre ces deux familles de protéine Gα, pour la signalisation du DOR. Afin de démontrer l’interrelation directe, des expériences de BRET ont été réalisées entre différentes Gα. En plus de montrer la formation de complexes sélectifs entre les Gα, les expériences de BRET réalisées en parallèle d’analyses de séquences de Gα, ont également mis à jour un site de sélectivité d’interaction entre les Gα, l’hélice α4. Suite à la transposition de cette hélice α4 de Gα12 sur Gαi1, qui normalement n’interagissent pas, il a été possible de forcer l’interaction entre Gα12 et Gαi1, confirmant ainsi que cette hélice α contient l’information permettant une sélectivité d’interaction. Au cours de cette thèse, il a été possible de générer de nouvelles méthodes de mesure d’interactions protéiques qui permettent de multiplexer différents signaux, ce qui a permis de mettre à jour de nouvelles interactions entre divers effecteurs de la signalisation de RCGP / Cellular communication is an important phenomenon for the maintenance of cellular homeostasis. Recently, important progress has been made in the cell signalling research field concerning the identification of the major actors and the cellular pathways engaged in response to these extracellular factors. However, in spite of this new information, the interrelationships at the molecular level between the various cellular actors and the different signalling pathways remain badly understood. Bioluminescence resonance energy transfer (BRET) monitors interactions between proteins and can be used in two configurations, the BRET480-YFP (also known as BRET1) and the BRET400-GFP (also known as BRET2). Following oxidation of its substrate, renilla luciferase transfers its energy to a fluorescent protein, only if they are in close proximity (≤100Å). By combining the BRET480-YFP and BRET400-GFP in one assay, it is possible to follow three pair-wise interactions in the same cellular population. However, using two bioluminescence reaction substrates limits the possibility of measuring the different BRET signals simultaneously. In order to measure multiple BRET signals simultaneously, three new BRET configurations, based on the BRET400-GFP, were developed using fluorescent proteins with different emission wavelengths. Two of the new BRET colors which have resolved emission wavelengths, the BRET400-BFP and BRET400mAmetrine, were combined for measuring the heterotrimeric G protein engagement by the vasopressin V2 receptor, as well as the accumulation of the second messenger. Combining these new BRET techniques reveals for the first time the formation of a complex between the α2A adrenergic receptor (α2AAR), Gαi1, the Gβγ dimer and G protein-receptor kinase (GRK2) following receptor activation. Moreover, only the entry of GRK2 into the receptor complex is required for the α2AAR desensitization, by inserting between Gαi1 and Gβγ. On the other hand, the stabilization of the interaction between α2AAR and β-arrestin2 requires the kinase activity of GRK2. Another study revealed the importance of multiple Gα subunits for calcium mobilization induced upon activation of the delta opioid receptor (DOR). Gαq subfamily member overexpression altered the DOR-induced calcium mobilization, but this Gαq calcium mobilization remained sensitive to pre-treatement pertussis toxin, through selective inhibition of the activity of Gαi members. Moreover, Gαi and Gαq co-expression potentiated calcium mobilization, suggesting an interrelationship between these two Gα families in DOR signaling. This Gαi and Gαq interrelationship could result from the formation of a complex close to the receptor. In order to test this hypothesis, BRET experiments were performed, with the aim of measuring the presence of complexes between different Gα. In addition to demonstrating complex formation between Gα subunits, the BRET experiments in parallel with sequence analysis, also revealed a selective interaction site between the Gα, the α4 helix. By swapping the a4 helix of Gαi with the α4 helix of Gα12, which doesn’t normally interact with Gα12, it was possible to force the interaction between Gα12 and Gαi to confirm that this α helix contains information concerning the selectivity of interactions between Gα subunits. During this thesis, new methods were to detect protein interactions and multiplexing these methods allowed the detection of novel interactions between signalling effectors of GPCRs.
7

Étude moléculaire de la formation de complexes protéiques impliqués dans la signalisation des récepteurs couplés aux protéines G

Breton, Billy 05 1900 (has links)
La communication cellulaire est un phénomène important pour le maintien de l’homéostasie des cellules. Au court des dernières années, cette sphère de recherche sur la signalisation cellulaire a connue des avancées importantes au niveau de l’identification des acteurs principaux impliqués dans la reconnaissance extracellulaire des signaux, ainsi que la compréhension des voies de signalisation engagées par les cellules pour répondre aux facteurs extracellulaires. Malgré ces nouvelles informations, les diverses interrelations moléculaires entre les acteurs ainsi que les voies de signalisation cellulaire, demeurent mal comprises. Le transfert d’énergie de résonance de bioluminescence (BRET) permet la mesure d’interactions protéiques et peut être utilisé dans deux configurations, le BRET480-YFP (connu aussi comme le BRET1) et le BRET400-GFP (connu aussi en tant que BRET2). Suite à l’oxydation de son substrat, la luciférase de renilla peut transférer son énergie à une protéine fluorescente, uniquement si elles sont à proximité l’une de l’autre (≤100Å). La combinaison dans un seul essai des BRET480-YFP et BRET400-GFP, a permis de suivre trois paires d’interactions, sur une même population cellulaire. Par contre, l’utilisation de deux substrats pour la réaction de bioluminescence rend impossible la mesure simultanée des différents signaux de BRET, pour ce trois nouvelles configurations de BRET ont été mises au point en utilisant des nouvelles protéines fluorescentes. Ainsi deux des nouvelles couleurs de BRET ayant des émissions résolues, le BRET400-BFP et le BRET400mAmetrine ont pu être combinées pour mesurer l’engagement par un RCPG d’une protéine G, ainsi que l’accumulation du second messager. La combinaison de ces BRET a également permis de révéler la formation d’un complexe entre le récepteur α2A adrénergique (α2AAR), Gαi1, le dimère Gβγ ainsi que la kinase des récepteurs couplés aux protéines G (GRK2), suite à l’activation du récepteur. De plus, seule l’entrée de GRK2 semble être en mesure de causer la désensibilisation du α2AAR, en s’intercalant entre Gαi1 et Gβγ. Par contre, la stabilisation de l’interaction entre α2AAR et la β-arrestine2 semble nécessiter l’activité kinase de GRK2. Une autre étude a révélé l’importance de différentes Gα pour la mobilisation du calcium, suite à l’activation du récepteur aux opioïdes de type delta (DOR). Suite à la surexpression de Gα de la famille Gαq, il a été possible de mesurer une influence de ces Gα sur la mobilisation du calcium. Toutefois, cette réponse calcique mesurée en présence des Gαq demeure sensible aux prétraitements à la toxine de Bordetella pertussis, qui inhibe sélectivement l’activité des Gαi. De plus, la co-expression de Gαi et Gαq permet de potentialiser la mobilisation de calcium, démontrant une interrelation entre ces deux familles de protéine Gα, pour la signalisation du DOR. Afin de démontrer l’interrelation directe, des expériences de BRET ont été réalisées entre différentes Gα. En plus de montrer la formation de complexes sélectifs entre les Gα, les expériences de BRET réalisées en parallèle d’analyses de séquences de Gα, ont également mis à jour un site de sélectivité d’interaction entre les Gα, l’hélice α4. Suite à la transposition de cette hélice α4 de Gα12 sur Gαi1, qui normalement n’interagissent pas, il a été possible de forcer l’interaction entre Gα12 et Gαi1, confirmant ainsi que cette hélice α contient l’information permettant une sélectivité d’interaction. Au cours de cette thèse, il a été possible de générer de nouvelles méthodes de mesure d’interactions protéiques qui permettent de multiplexer différents signaux, ce qui a permis de mettre à jour de nouvelles interactions entre divers effecteurs de la signalisation de RCGP / Cellular communication is an important phenomenon for the maintenance of cellular homeostasis. Recently, important progress has been made in the cell signalling research field concerning the identification of the major actors and the cellular pathways engaged in response to these extracellular factors. However, in spite of this new information, the interrelationships at the molecular level between the various cellular actors and the different signalling pathways remain badly understood. Bioluminescence resonance energy transfer (BRET) monitors interactions between proteins and can be used in two configurations, the BRET480-YFP (also known as BRET1) and the BRET400-GFP (also known as BRET2). Following oxidation of its substrate, renilla luciferase transfers its energy to a fluorescent protein, only if they are in close proximity (≤100Å). By combining the BRET480-YFP and BRET400-GFP in one assay, it is possible to follow three pair-wise interactions in the same cellular population. However, using two bioluminescence reaction substrates limits the possibility of measuring the different BRET signals simultaneously. In order to measure multiple BRET signals simultaneously, three new BRET configurations, based on the BRET400-GFP, were developed using fluorescent proteins with different emission wavelengths. Two of the new BRET colors which have resolved emission wavelengths, the BRET400-BFP and BRET400mAmetrine, were combined for measuring the heterotrimeric G protein engagement by the vasopressin V2 receptor, as well as the accumulation of the second messenger. Combining these new BRET techniques reveals for the first time the formation of a complex between the α2A adrenergic receptor (α2AAR), Gαi1, the Gβγ dimer and G protein-receptor kinase (GRK2) following receptor activation. Moreover, only the entry of GRK2 into the receptor complex is required for the α2AAR desensitization, by inserting between Gαi1 and Gβγ. On the other hand, the stabilization of the interaction between α2AAR and β-arrestin2 requires the kinase activity of GRK2. Another study revealed the importance of multiple Gα subunits for calcium mobilization induced upon activation of the delta opioid receptor (DOR). Gαq subfamily member overexpression altered the DOR-induced calcium mobilization, but this Gαq calcium mobilization remained sensitive to pre-treatement pertussis toxin, through selective inhibition of the activity of Gαi members. Moreover, Gαi and Gαq co-expression potentiated calcium mobilization, suggesting an interrelationship between these two Gα families in DOR signaling. This Gαi and Gαq interrelationship could result from the formation of a complex close to the receptor. In order to test this hypothesis, BRET experiments were performed, with the aim of measuring the presence of complexes between different Gα. In addition to demonstrating complex formation between Gα subunits, the BRET experiments in parallel with sequence analysis, also revealed a selective interaction site between the Gα, the α4 helix. By swapping the a4 helix of Gαi with the α4 helix of Gα12, which doesn’t normally interact with Gα12, it was possible to force the interaction between Gα12 and Gαi to confirm that this α helix contains information concerning the selectivity of interactions between Gα subunits. During this thesis, new methods were to detect protein interactions and multiplexing these methods allowed the detection of novel interactions between signalling effectors of GPCRs.

Page generated in 0.2016 seconds