• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Protein Kinase C Dependent Inhibition of Kir3.2 (GIRK2) Channel Activity and Its Molecular Determinants

Adney, Scott 26 September 2013 (has links)
Inwardly rectifying potassium (Kir) channels are critically important for regulating resting membrane potential in excitable cells, a job underscored by the severe pathophysiology associated with channel dysfunction. While all Kir channels require the activating lipid PIP2, many of these channels have diverse modulatory factors that couple to PIP2-dependent gating. Channels in the Kir3 (GIRK) family, in particular, have several co-activating elements, including G-protein betagamma subunits, ethanol, and sodium. During stimulation of Gq-coupled receptors, downstream activation of Protein Kinase C can phosphorylate and inhibit Kir3 channels, yet the mechanism of inhibition and phosphorylation sites are incompletely understood. We took a combined experimental and computational approach using neuronal Kir3.2 to investigate how phosphorylation at a putative PKC site identified in Kir3.1/3.4 could lead to channel inhibition. Kir3.2 inhibition was found to depend on the phosphorylation state of Ser-196, although mutagenesis data suggest it functions as an allosteric regulator of PKC inhibition. MD simulations identified a molecular switch whereby phosphorylation of Ser-196 recruits a critical gating residue, Arg-201, away from the sodium coordination site Asp-228. Neutralization of Ser-196 or Arg-201 resulted in less active channels which exhibited increased sensitivity to PKC inhibition. Additionally the interplay of PIP2 and PKC inhibition was examined in depth using homomeric Kir3.2, revealing that increases in channel-PIP2 interactions limit sensitivity to PKC inhibition, whereas low levels of PIP2 increase PKC sensitivity. Neutralization of Ser-196 uncoupled PKC inhibition from this PIP2 dependence. These studies suggest a model whereby PKC inhibition can occur along PIP2-dependent and PIP2-independent pathways, depending on the phosphorylation state of Ser-196.
2

Differential coupling of RGS3s and RGS4 to GPCR-GIRK channel signaling complexes

Jaén, Cristina 01 January 2006 (has links)
'Regulators of G protein signaling' (RGS proteins) modulate the G proteincycle by enhancing the GTPase activity of Ga subunits. These changesaccelerate the kinetics of ion channel modulation by Gai/o-coupled receptors(GPCRs) such as the G protein-gated inward rectifier K+ (GIRK/Kir3) channel. Myexperiments indicate that a single cerebellar granule (CG) neuron, a cell type thatendogenously expresses GIRK channels is able to express a wide variety ofRGS proteins. I selected two of them, which are widely expressed andtranscriptionally regulated during pathophysiologic conditions, to compare theirfunctional properties. I originally described the differential modulatory effects oftwo RGS proteins, the RGS3 short isoform (RGS3s) and RGS4, on muscarinicm2 and serotonin 1A receptor-coupled Kir3.1/Kir3.2a channels expressed inChinese hamster ovary (CHO-K1) cells. Both RGS3s and RGS4 acceleratedGIRK activation and deactivation current kinetics in a similar way. However, onlyRGS3s si gnificantly decreased the maximal GIRK current (Imax) elicited by ACh(~45% inhibition) and significantly increased the EC50 for both GPCRs. Thehypothesis that emerged from this initial study was that the distinct RGS4 Nterminaldomain mediated a direct coupling of RGS4 to GPCR-GIRK channelsignaling complexes that was not shared by RGS3s. To test this hypothesis, Iepitope-tagged several GPCRs, the Kir3.1 subunit, RGS3s, RGS4, and severaldeletion mutants and chimeras for co-immunoprecipitation experiments. Using anepitope-tagged degradation resistant RGS4 mutant RGS4(C2V), I detected coprecipitationof different GPCR-GIRK channel complexes with RGS4 but notRGS3s.The functional impact of RGS4 coupling to the GPCR-Kir3 channelcomplex versus uncoupled RGS3s was not apparent in recordings from CHO-K1cells presumably due to a high degree of RGS collision-coupling. Controlledexpression in Xenopus oocytes revealed a 30-fold greater potency for RGS4 inthe accelerating GIRK channel gating kinetics. In summary, these findings demonstrate that one of the ways for the cellto achieve signaling pathway specificity may be through selective coupling of thedifferent GPCR-effector-RGS protein complexes.
3

Régulation du complexe constitutif formé par le récepteur opioïde delta et le canal potassique de la famille Kir3

Nagi, Karim 01 1900 (has links)
Les opioïdes sont les analgésiques les plus efficaces dans le traitement des douleurs sévères. Ils produisent leurs effets en ciblant spécifiquement les récepteurs opioïdes localisés tout le long de la voie de perception de la douleur où ils modulent la transmission de l'information douloureuse. La plupart des études dans ce domaine essaient de caractériser les récepteurs opioïdes à l'état isolé de tout partenaire de signalisation. Cette thèse, par contre, montre que le récepteur opioïde delta (DOR) peut former un complexe avec sa protéine G et l'un de ses effecteurs impliqués dans la production de l'effet analgésique, le canal potassique à rectification entrante activée par les protéines G (Kir3 ou GIRK). Après avoir établi la présence de ce complexe constitutif, on a ensuite caractérisé sa stabilité, modulation et régulation suite à une stimulation avec des agonistes opioïdes. En premier lieu, on a caractérisé la transmission de l'information du récepteur DOR, suite à son activation par un agoniste, vers le canal Kir3. On a remarqué que cette transmission ne suit pas le modèle de collision, généralement accepté, mais nécessite plutôt un simple changement dans la conformation du complexe préformé. Ensuite, on a déterminé que même suite à l'activation prolongée du récepteur DOR par un agoniste complet, le complexe DOR/Kir3 maintenait son intégrité et a été reconnu par la βarrestine (βarr) comme une seule unité signalétique provoquant ainsi l'internalisation de DOR et Kir3 par un mécanisme clathrine et dynamine-dépendant. Ainsi, prises ensemble, ces données montrent que l'activation du récepteur DOR déclenche non seulement l'activation de l'effecteur Kir3 mais également un mécanisme de régulation qui élimine cet effecteur de la membrane plasmique. / Opioids are the most effective analgesics in the treatment of severe pain. They produce their effects by specifically targeting opioid receptors located all along the pain perception pathway where they modulate the transmission of pain information. Most studies in this area try to characterize the opioid receptor in isolation from any signaling partner. This thesis, on the other hand, shows that the delta opioid receptor (DOR) can form a complex with its G protein and one of its effectors involved in the production of the analgesic effect, the G protein coupled inward rectifying potassium channel (Kir3 or GIRK). Having established the presence of this constitutive complex, we then characterized its stability, modulation and regulation following stimulation with opioid agonists. First, we characterized the transmission of information from DOR, following its activation by an agonist, to the Kir3 channel. We have noticed that this transmission does not follow the collision model, generally accepted, but rather requires a simple change in the conformation within the preformed complex. Then, we have determined that even following prolonged DOR activation by a full agonist, the DOR/Kir3 complex maintained its integrity and was recognized by βarrestin (βarr) as a single signaling unit producing the internalization of DOR and Kir3 by a clathrin and dynamin-dependent mechanism. Thus, taken together, these data show that DOR activation triggers not only activation of the Kir3 effector but also a regulatory mechanism that removes this effector from the plasma membrane.
4

Rôle du dimère Gbetagamma dans l’organisation des systèmes de signalisation cellulaire

Robitaille, Mélanie 11 1900 (has links)
Selon le modèle classique, le signal reçu par les récepteurs couplés aux protéines G (RCPG) se propage suite à des interactions transitoires et aléatoires entre les RCPGs, les protéines G et leurs effecteurs. Par les techniques de transfert d’énergie de résonance de bioluminescence (BRET), de complémentation bimoléculaire de protéines fluorescentes (BiFC) et de co-immunoprécipitation, nous avons observé que les récepteurs, les protéines G et les effecteurs forment un complexe stable, avant et après l’activation des récepteurs. L’interaction entre l’effecteur Kir3 et le dimère Gbetagamma se produit initialement au réticulum endoplasmique et est sensible à un agoniste liposoluble des récepteurs beta2-adrénergiques. Bien que peu de spécificité pour les nombreux isoformes des sous-unités Gbetagamma ait été observée pour l’activation du canal Kir3, les interactions précoces au RE sont plus sensibles aux différentes combinaisons de Gbetagamma présentes. En plus de son rôle dans la régulation des effecteurs, le dimère Gbetagamma peut interagir avec de nombreuses protéines possédant des localisations cellulaires autres que la membrane plasmique. Nous avons identifié une nouvelle classe de protéines interagissant avec la sous-unité Gbeta, autant en système de surexpression que dans des extraits de cerveaux de rats, soit les protéines FosB et cFos, qui forment le complexe de transcription AP-1, suite à leur dimérisation avec les protéines de la famille des Jun. La coexpression du dimère Gbetagamma réduit l’activité transcriptionnelle du complexe AP-1 induit par le phorbol 12-,myristate 13-acetate (PMA), sans toutefois interférer avec la formation du complexe Fos/Jun ou son interaction avec l’ADN. Toutefois, le dimère Gbetagamma colocalise au noyau avec le complexe AP-1 et recrute les protéines histones déacétylases (HDAC) afin d’inhiber l’activité transcriptionnelle du complexe AP-1. / Based on the classical model of G protein activation, signal transduction occurs by transient and random interactions between the receptor, the G protein and the effectors. Bioluminescence resonance energy transfer (BRET), bimolecular fluorescence complementation assay (BiFC) and co-immunoprecipitation experiments revealed that receptor, heterotrimeric G proteins and effectors were found in stable complexes that persisted during signal transduction. Kir3 channel and Gbetagamma dimer interacts first in the endoplasmic reticulum (ER) and this interaction can be modulated by the membrane-permeable beta2-adrenergic agonist cimaterol. Little specificity has been reported for several isoforms of the Gbetagamma dimer in the activation of the Kir3 channel. However, we found that the “precocious” interaction in the ER is sensitive to the presence of different combination of Gbeta and Ggamma subunits. Recently, a number of new proteins, which are not classical effectors at the plasma membrane have been shown to interact with GbetagammaThese include histone deacetylases 4 and 5 (HDAC)[1, 2] and the glucocorticoid receptor. We identified a novel interaction between Gbetagamma subunit and the Fos proteins, which form the transcription factor AP-1 following their dimerization with Jun proteins. Gbetagamma and Fos interactions can be detected in HEK 293 cells overexpressing the two proteins as well as in brains from rats pre-treated with amphetamine. Gbetagamma/Fos interaction favours the nuclear translocation of Gbetagamma dimer and inhibits AP-1 transcriptional activity. Gbetagamma did not block Fos/Jun dimerization or the interaction of AP-1 with DNA but recruited HDACs to the AP-1 complex.
5

Gβγ acts at an inter-subunit cleft to activate GIRK1 channels

Mahajan, Rahul 09 October 2012 (has links)
Heterotrimeric guanine nucleotide-binding proteins (G-proteins) consist of an alpha subunit (Gα) and the dimeric beta-gamma subunit (Gβγ). The first example of direct cell signaling by Gβγ was the discovery of its role in activating G-protein regulated inwardly rectifying K+ (GIRK) channels which underlie the acetylcholine-induced K+ current responsible for vagal inhibition of heart rate. Published crystal structures have provided important insights into the structures of the G-protein subunits and GIRK channels separately, but co-crystals of the channel and Gβγ together remain elusive and no specific reciprocal residue interactions between the two proteins are currently known. Given the absence of direct structural evidence, we attempted to identify these functionally important channel-Gβγ interactions using a computational approach. We developed a multistage computational docking algorithm that combines several known methods in protein-protein docking. Application of the docking protocol to previously published structures of Gβγ and GIRK1 homomeric channels produced a clear signal of a favored binding mode. Analysis of this binding mode suggested a mechanism by which Gβγ promotes the open state of the channel. The channel-Gβγ interactions predicted by the model in silico could be disrupted in vitro by mutation of one protein and rescued by additional mutation of reciprocal residues in the other protein. These interactions were found to extend to agonist induced activation of the channels as well as to activation of the native heteromeric channels. Currently, the structural mechanism by which Gβγ regulates the functional conformations of GIRK channels or of any of its membrane-associated effector proteins is not known. This work shows the first evidence for specific reciprocal interactions between Gβγ and a GIRK channel and places these interactions in the context of a general model of intracellular regulation of GIRK gating.
6

Rôle du dimère Gbetagamma dans l’organisation des systèmes de signalisation cellulaire

Robitaille, Mélanie 11 1900 (has links)
Selon le modèle classique, le signal reçu par les récepteurs couplés aux protéines G (RCPG) se propage suite à des interactions transitoires et aléatoires entre les RCPGs, les protéines G et leurs effecteurs. Par les techniques de transfert d’énergie de résonance de bioluminescence (BRET), de complémentation bimoléculaire de protéines fluorescentes (BiFC) et de co-immunoprécipitation, nous avons observé que les récepteurs, les protéines G et les effecteurs forment un complexe stable, avant et après l’activation des récepteurs. L’interaction entre l’effecteur Kir3 et le dimère Gbetagamma se produit initialement au réticulum endoplasmique et est sensible à un agoniste liposoluble des récepteurs beta2-adrénergiques. Bien que peu de spécificité pour les nombreux isoformes des sous-unités Gbetagamma ait été observée pour l’activation du canal Kir3, les interactions précoces au RE sont plus sensibles aux différentes combinaisons de Gbetagamma présentes. En plus de son rôle dans la régulation des effecteurs, le dimère Gbetagamma peut interagir avec de nombreuses protéines possédant des localisations cellulaires autres que la membrane plasmique. Nous avons identifié une nouvelle classe de protéines interagissant avec la sous-unité Gbeta, autant en système de surexpression que dans des extraits de cerveaux de rats, soit les protéines FosB et cFos, qui forment le complexe de transcription AP-1, suite à leur dimérisation avec les protéines de la famille des Jun. La coexpression du dimère Gbetagamma réduit l’activité transcriptionnelle du complexe AP-1 induit par le phorbol 12-,myristate 13-acetate (PMA), sans toutefois interférer avec la formation du complexe Fos/Jun ou son interaction avec l’ADN. Toutefois, le dimère Gbetagamma colocalise au noyau avec le complexe AP-1 et recrute les protéines histones déacétylases (HDAC) afin d’inhiber l’activité transcriptionnelle du complexe AP-1. / Based on the classical model of G protein activation, signal transduction occurs by transient and random interactions between the receptor, the G protein and the effectors. Bioluminescence resonance energy transfer (BRET), bimolecular fluorescence complementation assay (BiFC) and co-immunoprecipitation experiments revealed that receptor, heterotrimeric G proteins and effectors were found in stable complexes that persisted during signal transduction. Kir3 channel and Gbetagamma dimer interacts first in the endoplasmic reticulum (ER) and this interaction can be modulated by the membrane-permeable beta2-adrenergic agonist cimaterol. Little specificity has been reported for several isoforms of the Gbetagamma dimer in the activation of the Kir3 channel. However, we found that the “precocious” interaction in the ER is sensitive to the presence of different combination of Gbeta and Ggamma subunits. Recently, a number of new proteins, which are not classical effectors at the plasma membrane have been shown to interact with GbetagammaThese include histone deacetylases 4 and 5 (HDAC)[1, 2] and the glucocorticoid receptor. We identified a novel interaction between Gbetagamma subunit and the Fos proteins, which form the transcription factor AP-1 following their dimerization with Jun proteins. Gbetagamma and Fos interactions can be detected in HEK 293 cells overexpressing the two proteins as well as in brains from rats pre-treated with amphetamine. Gbetagamma/Fos interaction favours the nuclear translocation of Gbetagamma dimer and inhibits AP-1 transcriptional activity. Gbetagamma did not block Fos/Jun dimerization or the interaction of AP-1 with DNA but recruited HDACs to the AP-1 complex.

Page generated in 0.0224 seconds