• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 15
  • 4
  • 4
  • 4
  • 3
  • 1
  • 1
  • Tagged with
  • 79
  • 43
  • 20
  • 14
  • 14
  • 11
  • 10
  • 10
  • 10
  • 10
  • 10
  • 9
  • 9
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Consequences of crossing over in intestitial segments of barley interchange heterozygotes

Wanjari, Manohar Raghunath, 1932- January 1964 (has links)
No description available.
2

A study of the effects of single locus heterozygosity on traits which may have survival value in eight stocks of laboratory mice /

Les, Edwin Paul January 1959 (has links)
No description available.
3

Molecular analysis of the tumour suppressor genes MXI1 and PTEN in human squamous cell carcinoma of the head and neck

Snaddon, Jennifer A. M. January 2001 (has links)
No description available.
4

Adenine auxotrophic heterozygosity in candida albicans CA 12. / CUHK electronic theses & dissertations collection

January 1997 (has links)
Cao Boyang. / Thesis (Ph.D.)--Chinese University of Hong Kong, 1997. / Includes bibliographical references. / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web.
5

Development and characterization of microsatellite markers for the grain Amaranths (Amaranthus Spp. L.) /

Mallory, Melanie Ann, January 2007 (has links) (PDF)
Thesis (M.S.)--Brigham Young University. Dept. of Plant and Wildlife Sciences, 2007. / Includes bibliographical references (p. 74-83).
6

Investigating the mechanisms responsible for DNA double-strand break-induced loss of heterozygosity in fission yeast

Cullen, Jason Kingsley January 2007 (has links)
Loss of heterozygosity (LOH) is considered a causal event in the formation of many cancers, with increasing evidence suggesting that DNA double-strand breaks (DSBs) play a major role in its occurrence. Despite its prominence in cancer, however, the precise molecular mechanisms responsible for extensive LOH and how such events are suppressed in normal cells is poorly understood. To investigate the mechanisms responsible for extensive break-induced LOH in eukaryotes, this study took advantage of an assay system in which such events could be identified through screening for loss of an auxotrophic his3<sup>+</sup> marker, found ~25kb distal to an HO-endonuclease cut site in a non-essential minichromosome in Schizosaccharomyces pombe. Studies using this system had previously shown that extensive break-induced LOH in wild-type background, whilst infrequent, was predominantly associated with large translocations resulting from both allelic crossovers during G2 phase and breakinduced replication (BIR). Such extensive loss of allele specific information was also found to require rhp55<sup>+</sup>, rhp51<sup>+</sup>, rhp54<sup>+</sup> and mus81<sup>+</sup>. This study has identified an additional role for the MRN complex, Rad22 and RPA in such break-induced translocations, suggesting that both allelic crossovers and BIR require homologous recombination (HR) in fission yeast. Surprisingly, break-induced extensive LOH was still observed in HR mutants. In contrast to wild-type cells, however, such extensive LOH was found to arise predominantly through de novo telomere addition at, or near, the break-site. Interestingly, telomere addition was most frequently observed in a rad22Δ background that disrupts HR following end resection. Further analysis demonstrated that de novo telomere addition was also significantly increased in ku70Δ rhp55Δ cells. Moreover, overexpression of rhp51 in rhp55Δ cells led to a substantial reduction in break-induced de novo telomere addition. Together, these findings support a model in which HR prevents de novo telomere addition at DSBs by competing for resected ssDNA ends. In addition to providing information on break-induced LOH this study has identified a requirement for the MRN complex in efficient repair in rhp55Δ cells, which was previously found to occur via sister chromatid recombination (SCR) or a HRdependent end-joining pathway (EJ). Interestingly, deletion of MRN components also resulted in an increase in telomere addition, providing further evidence that HR competes with telomere addition for the repair of DSBs. Overall, these findings shed light on the competitive relationships between pathways of DSB repair/misrepair in S. pombe and how such mechanisms contribute to the prevention or promotion of genome instability.
7

Receptor status and genetic changes in apocrine metaplasia and their possible role in breast oncogenesis

Selim, Abdel-Ghani Abdel-Zaher El-Sayed January 1999 (has links)
No description available.
8

MHC, parasite burden and heterozygosity in the blue shark (Prionace glauca, L.1758)

McMillan, Heather Anne January 2013 (has links)
The blue shark (Prionace glauca) is a highly migratory pelagic elasmobranch that inhabits ocean basins globally. As a result, this shark is exposed to intensive ocean exploitation by commercial target fisheries, by-catch and for recreational pursuits globally. This top predator is therefore at high risk of becoming overfished. Advances to current knowledge of genetic population structure and diversity of this species would provide vital information required to initiate co-operative management approaches. In this study, the major histocompatibility complex (MHC) class IIa and IIβ genes were successfully isolated and characterised from blue sharks. Phylogenetic trees of the class II genes showed three major clades; one of teleost fish, one of tetrapods and one of sharks. The MHC class IIβ gene exon 2 primers successfully amplified partial sequences in blue sharks from several global locations. Analysis of sequences using denaturing gradient gel electrophoresis (DGGE) suggested the assay resolved different sequences up to one basepair, making the assay potentially very useful with further development. The class II genes presented in this study show conflicting evidence for the presence of more than one class II locus. To explore inheritance patterns of MHC exon 2 diversity, a single blue shark litter (mother + 19 pups) was cloned and sequenced, revealing evidence to suggest the possibility of more than one locus for class IIβ. Statistical analysis of parasite loads and diversities from blue shark spiral valves revealed no definitive population structure, supporting global and North Atlantic mtDNA and microsatellites genetic analyses presented here. The size (fork length) of sharks was found to be potentially influential when modelled with individual microsatellite heterozygosity and fork length. International co-operation will be required to prevent this species becoming extinct from global marine ecosystems. Reductions in numbers could lead to reduced genetic diversity, decreased immunity and ultimately an 'unhealthy' population.
9

Functional analysis of ANKRD11 and FBXO31: two candidate tumour suppressor genes from the 16q24.3 breast cancer loss of heterozygosity region.

Neilsen, Paul Matthew January 2008 (has links)
Loss of heterozygosity (LOH) on the long arm of chromosome 16 is frequently observed during the onset of breast cancer. Our laboratory has recently identified both ANKRD11 and FBXO31 as candidate tumour suppressor genes in the chromosome band 16q24.3, which is the smallest region of overlap for breast cancer LOH. This thesis focuses on the functional analysis of these two novel genes and implicates a role for them as breast cancer tumour suppressors. ANKRD11: a novel p53 coactivator involved in the rescue of mutant p53. The ability of p53 to act as a transcription factor is critical for its function as a tumour suppressor. Ankyrin repeat domain 11 (ANKRD11) was found to be a novel p53-interacting protein which enhanced the transcriptional activity of p53. ANKRD11 expression in breast cancer cell lines was shown to be down-regulated when compared to ANKRD11 expression in finite life-span HMECs and non-malignant immortalized breast epithelial cells. Restoration of ANKRD11 expression in MCF-7 (p53 wild-type) and MDA-MB-468 (p53[superscript R273H] mutant) cells suppressed the oncogenic properties of these breast cancer cell lines through enhancement of p21[superscript waf1] expression. ShRNA-mediated silencing of ANKRD11 reduced the ability of p53 to activate p21[superscript waf1] expression in response to DNA damage. ANKRD11 was shown to associate with the p53 acetyltransferase, P/CAF, and exogenous ANKRD11 expression increased the levels of acetylated p53. Exogenous ANKRD11 expression enhanced the DNA-binding properties of the p53[superscript R273H] mutant to the CDKN1A promoter, implicating a role for ANKRD11 in the restoration of mutant p53[superscript R273H] function. These findings demonstrate a role for ANKRD11 as a p53 coactivator and illustrate the potential of ANKRD11 in the restoration of mutant p53[superscript R273H] function. ANKRD11 has roles beyond that of p53 coactivation. This thesis also presents preliminary findings to suggest that ANKRD11 may be involved in the regulation of eukaryotic cell division. Furthermore, ANKRD11 was shown to function as an estrogen receptor coactivator. Taken together, these finding suggest that ANKRD11 is a multi-functional cancer-related protein. FBXO31: the 16q24.3 senescence gene. A BAC located in the 16q24.3 breast cancer loss of heterozygosity region was previously shown to restore cellular senescence when transferred into breast tumour cell lines. We have shown that FBXO31, although located just distal to this BAC, can induce cellular senescence in the breast cancer cell line MCF-7 and is the likely candidate senescence gene. Exogenous FBXO31 expression inhibited the oncogenic properties of the MCF-7 breast cancer cell line. In addition, compared to the relative expression in normal breast, levels of FBXO31 were down-regulated in breast tumour cell lines and primary tumours. FBXO31 protein levels were cell cycle regulated, with maximal expression from late G2 to early G1 phase. Ectopic expression of FBXO31 in the breast cancer cell line MDA-MB-468 resulted in the accumulation of cells at the G1 phase of the cell cycle. FBXO31 was also shown to be a component of a SCF ubiquitination complex. We propose that FBXO31 functions as a tumour suppressor by generating SCF[superscript FBXO31] complexes that target particular substrates, critical for the normal execution of the cell cycle, for ubiquitination and subsequent degradation. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1325445 / Thesis (Ph.D.) -- University of Adelaide, School of Medicine, Discipline of Medicine, 2008
10

Functional analysis of ANKRD11 and FBXO31: two candidate tumour suppressor genes from the 16q24.3 breast cancer loss of heterozygosity region.

Neilsen, Paul Matthew January 2008 (has links)
Loss of heterozygosity (LOH) on the long arm of chromosome 16 is frequently observed during the onset of breast cancer. Our laboratory has recently identified both ANKRD11 and FBXO31 as candidate tumour suppressor genes in the chromosome band 16q24.3, which is the smallest region of overlap for breast cancer LOH. This thesis focuses on the functional analysis of these two novel genes and implicates a role for them as breast cancer tumour suppressors. ANKRD11: a novel p53 coactivator involved in the rescue of mutant p53. The ability of p53 to act as a transcription factor is critical for its function as a tumour suppressor. Ankyrin repeat domain 11 (ANKRD11) was found to be a novel p53-interacting protein which enhanced the transcriptional activity of p53. ANKRD11 expression in breast cancer cell lines was shown to be down-regulated when compared to ANKRD11 expression in finite life-span HMECs and non-malignant immortalized breast epithelial cells. Restoration of ANKRD11 expression in MCF-7 (p53 wild-type) and MDA-MB-468 (p53[superscript R273H] mutant) cells suppressed the oncogenic properties of these breast cancer cell lines through enhancement of p21[superscript waf1] expression. ShRNA-mediated silencing of ANKRD11 reduced the ability of p53 to activate p21[superscript waf1] expression in response to DNA damage. ANKRD11 was shown to associate with the p53 acetyltransferase, P/CAF, and exogenous ANKRD11 expression increased the levels of acetylated p53. Exogenous ANKRD11 expression enhanced the DNA-binding properties of the p53[superscript R273H] mutant to the CDKN1A promoter, implicating a role for ANKRD11 in the restoration of mutant p53[superscript R273H] function. These findings demonstrate a role for ANKRD11 as a p53 coactivator and illustrate the potential of ANKRD11 in the restoration of mutant p53[superscript R273H] function. ANKRD11 has roles beyond that of p53 coactivation. This thesis also presents preliminary findings to suggest that ANKRD11 may be involved in the regulation of eukaryotic cell division. Furthermore, ANKRD11 was shown to function as an estrogen receptor coactivator. Taken together, these finding suggest that ANKRD11 is a multi-functional cancer-related protein. FBXO31: the 16q24.3 senescence gene. A BAC located in the 16q24.3 breast cancer loss of heterozygosity region was previously shown to restore cellular senescence when transferred into breast tumour cell lines. We have shown that FBXO31, although located just distal to this BAC, can induce cellular senescence in the breast cancer cell line MCF-7 and is the likely candidate senescence gene. Exogenous FBXO31 expression inhibited the oncogenic properties of the MCF-7 breast cancer cell line. In addition, compared to the relative expression in normal breast, levels of FBXO31 were down-regulated in breast tumour cell lines and primary tumours. FBXO31 protein levels were cell cycle regulated, with maximal expression from late G2 to early G1 phase. Ectopic expression of FBXO31 in the breast cancer cell line MDA-MB-468 resulted in the accumulation of cells at the G1 phase of the cell cycle. FBXO31 was also shown to be a component of a SCF ubiquitination complex. We propose that FBXO31 functions as a tumour suppressor by generating SCF[superscript FBXO31] complexes that target particular substrates, critical for the normal execution of the cell cycle, for ubiquitination and subsequent degradation. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1325445 / Thesis (Ph.D.) -- University of Adelaide, School of Medicine, Discipline of Medicine, 2008

Page generated in 0.0471 seconds