• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Programação da produção : uma abordagem por redes neurais artificiais.

Terra, Ana Rita Tiradentes 27 February 2000 (has links)
Made available in DSpace on 2016-06-02T19:51:30Z (GMT). No. of bitstreams: 1 DissARTT.pdf: 880718 bytes, checksum: 0ae01da081c025b6c842f9d50625c259 (MD5) Previous issue date: 2000-02-27 / Financiadora de Estudos e Projetos / Production scheduling finds in the most detailed and complex level of production planning and control systems. Due to its nature combinatorial, several methods have been proposed to solve it. Among them there are the techniques of simulation systems and artificial intelligence approaches. This work presents a procedure of solution of production scheduling, through a hybrid model of simulation systems and artificial neural networks. In this procedure, the purpose of the artificial neural network is to learn the relationships between the priority rules designated to the machines of a production system, and the values of performance measures used to evaluate the scheduling. The objective is to analyze the differentiation among a group of combinations of priority rules through the evaluation of four performance measures. Results are presented and commented, highlighting the capacity of generalization of the hybrid model in prescribing priority rules to the machines, based on values of performance measures established by the user. / A atividade da programação da produção, também chamada scheduling, encontra-se no nível mais detalhado e complexo de um sistema de planejamento e controle da produção. Devido à sua natureza combinatorial, vários métodos têm sido propostos como alternativas de solução para resolvê-la. Entre eles encontram-se a técnica de simulação de sistemas e abordagens por inteligência artificial. Este trabalho apresenta um procedimento de solução da programação da produção, através de um modelo híbrido de simulação de sistemas e redes neurais artificiais. Neste procedimento, o papel da rede neural artificial é aprender as relações entre as regras de prioridade designadas às máquinas de um ambiente de produção, e os valores das medidas de desempenho utilizados para avaliar as alternativas de programação. O objetivo é analisar a diferenciação entre um conjunto de combinações de regras de prioridade através da avaliação de quatro medidas de desempenho. Resultados são apresentados e comentados, destacando a capacidade de generalização do modelo híbrido em prescrever regras de prioridade às máquinas, a partir de valores de medidas de desempenho estabelecidos pelo usuário.

Page generated in 0.081 seconds