• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 278
  • 53
  • 44
  • 35
  • 31
  • 13
  • 10
  • 9
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 582
  • 582
  • 313
  • 251
  • 134
  • 92
  • 84
  • 67
  • 57
  • 54
  • 51
  • 44
  • 42
  • 40
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Improvements in the Accuracy of Pairwise Genomic Alignment

Hudek, Alexander Karl January 2010 (has links)
Pairwise sequence alignment is a fundamental problem in bioinformatics with wide applicability. This thesis presents three new algorithms for this well-studied problem. First, we present a new algorithm, RDA, which aligns sequences in small segments, rather than by individual bases. Then, we present two algorithms for aligning long genomic sequences: CAPE, a pairwise global aligner, and FEAST, a pairwise local aligner. RDA produces interesting alignments that can be substantially different in structure than traditional alignments. It is also better than traditional alignment at the task of homology detection. However, its main negative is a very slow run time. Further, although it produces alignments with different structure, it is not clear if the differences have a practical value in genomic research. Our main success comes from our local aligner, FEAST. We describe two main improvements: a new more descriptive model of evolution, and a new local extension algorithm that considers all possible evolutionary histories rather than only the most likely. Our new model of evolution provides for improved alignment accuracy, and substantially improved parameter training. In particular, we produce a new parameter set for aligning human and mouse sequences that properly describes regions of weak similarity and regions of strong similarity. The second result is our new extension algorithm. Depending on heuristic settings, our new algorithm can provide for more sensitivity than existing extension algorithms, more specificity, or a combination of the two. By comparing to CAPE, our global aligner, we find that the sensitivity increase provided by our local extension algorithm is so substantial that it outperforms CAPE on sequence with 0.9 or more expected substitutions per site. CAPE itself gives improved sensitivity for sequence with 0.7 or more expected substitutions per site, but at a great run time cost. FEAST and our local extension algorithm improves on this too, the run time is only slightly slower than existing local alignment algorithms and asymptotically the same.
62

Probabilistic Models for Genetic and Genomic Data with Missing Information

Hicks, Stephanie 16 September 2013 (has links)
Genetic and genomic data often contain unobservable or missing information. Applications of probabilistic models such as mixture models and hidden Markov models (HMMs) have been widely used since the 1960s to make inference on unobserved information using some observed information demonstrating the versatility and importance of these models. Biological applications of mixture models include gene expression data, meta-analysis, disease mapping, epidemiology and pharmacology and applications of HMMs include gene finding, linkage analysis, phylogenetic analysis and identifying regions of identity-by-descent. An important statistical and informatics challenge posed by modern genetics is to understand the functional consequences of genetic variation and its relation to phenotypic variation. In the analysis of whole-exome sequencing data, predicting the impact of missense mutations on protein function is an important factor in identifying and determining the clinical importance of disease susceptibility mutations in the absence of independent data determining impact on disease. In addition to the interpretation, identifying co-inherited regions of related individuals with Mendelian disorders can further narrow the search for disease susceptibility mutations. In this thesis, we develop two probabilistic models in application of genetic and genomic data with missing information: 1) a mixture model to estimate a posterior probability of functionality of missense mutations and 2) a HMM to identify co-inherited regions in the exomes of related individuals. The first application combines functional predictions from available computational or {\it in silico} methods which often have a high degree of disagreement leading to conflicting results for the user to assess the pathogenic impact of missense mutations on protein function. The second application considers extensions of a first-order HMM to include conditional emission probabilities varying as a function of minor allele frequency and a second-order dependence structure between observed variant calls. We apply these models to whole-exome sequencing data and show how these models can be used to identify disease susceptibility mutations. As disease-gene identification projects increasingly use next-generation sequencing, the probabilistic models developed in this thesis help identify and associate relevant disease-causing mutations with human disorders. The purpose of this thesis is to demonstrate that probabilistic models can contribute to more accurate and dependable inference based on genetic and genomic data with missing information.
63

Enhancements to Hidden Markov Models for Gene Finding and Other Biological Applications

Vinar, Tomas January 2005 (has links)
In this thesis, we present enhancements of hidden Markov models for the problem of finding genes in DNA sequences. Genes are the parts of DNA that serve as a template for synthesis of proteins. Thus, gene finding is a crucial step in the analysis of DNA sequencing data. <br /><br /> Hidden Markov models are a key tool used in gene finding. Yhis thesis presents three methods for extending the capabilities of hidden Markov models to better capture the statistical properties of DNA sequences. In all three, we encounter limiting factors that lead to trade-offs between the model accuracy and those limiting factors. <br /><br /> First, we build better models for recognizing biological signals in DNA sequences. Our new models capture non-adjacent dependencies within these signals. In this case, the main limiting factor is the amount of training data: more training data allows more complex models. Second, we design methods for better representation of length distributions in hidden Markov models, where we balance the accuracy of the representation against the running time needed to find genes in novel sequences. Finally, we show that creating hidden Markov models with complex topologies may be detrimental to the prediction accuracy, unless we use more complex prediction algorithms. However, such algorithms require longer running time, and in many cases the prediction problem is NP-hard. For gene finding this means that incorporating some of the prior biological knowledge into the model would require impractical running times. However, we also demonstrate that our methods can be used for solving other biological problems, where input sequences are short. <br /><br /> As a model example to evaluate our methods, we built a gene finder ExonHunter that outperforms programs commonly used in genome projects.
64

Evidence Combination in Hidden Markov Models for Gene Prediction

Brejova, Bronislava January 2005 (has links)
This thesis introduces new techniques for finding genes in genomic sequences. Genes are regions of a genome encoding proteins of an organism. Identification of genes in a genome is an important step in the annotation process after a new genome is sequenced. The prediction accuracy of gene finding can be greatly improved by using experimental evidence. This evidence includes homologies between the genome and databases of known proteins, or evolutionary conservation of genomic sequence in different species. <br /><br /> We propose a flexible framework to incorporate several different sources of such evidence into a gene finder based on a hidden Markov model. Various sources of evidence are expressed as partial probabilistic statements about the annotation of positions in the sequence, and these are combined with the hidden Markov model to obtain the final gene prediction. The opportunity to use partial statements allows us to handle missing information transparently and to cope with the heterogeneous character of individual sources of evidence. On the other hand, this feature makes the combination step more difficult. We present a new method for combining partial probabilistic statements and prove that it is an extension of existing methods for combining complete probability statements. We evaluate the performance of our system and its individual components on data from the human and fruit fly genomes. <br /><br /> The use of sequence evolutionary conservation as a source of evidence in gene finding requires efficient and sensitive tools for finding similar regions in very long sequences. We present a method for improving the sensitivity of existing tools for this task by careful modeling of sequence properties. In particular, we build a hidden Markov model representing a typical homology between two protein coding regions and then use this model to optimize a component of a heuristic algorithm called a spaced seed. The seeds that we discover significantly improve the accuracy and running time of similarity search in protein coding regions, and are directly applicable to our gene finder.
65

Design and Evaluation of a Presentation Maestro: Controlling Electronic Presentations Through Gesture

Fourney, Adam January 2009 (has links)
Gesture-based interaction has long been seen as a natural means of input for electronic presentation systems; however, gesture-based presentation systems have not been evaluated in real-world contexts, and the implications of this interaction modality are not known. This thesis describes the design and evaluation of Maestro, a gesture-based presentation system which was developed to explore these issues. This work is presented in two parts. The first part describes Maestro's design, which was informed by a small observational study of people giving talks; and Maestro's evaluation, which involved a two week field study where Maestro was used for lecturing to a class of approximately 100 students. The observational study revealed that presenters regularly gesture towards the content of their slides. As such, Maestro supports several gestures which operate directly on slide content (e.g., pointing to a bullet causes it to be highlighted). The field study confirmed that audience members value these content-centric gestures. Conversely, the use of gestures for navigating slides is perceived to be less efficient than the use of a remote. Additionally, gestural input was found to result in a number of unexpected side effects which may hamper the presenter's ability to fully engage the audience. The second part of the thesis presents a gesture recognizer based on discrete hidden Markov models (DHMMs). Here, the contributions lie in presenting a feature set and a factorization of the standard DHMM observation distribution, which allows modeling of a wide range of gestures (e.g., both one-handed and bimanual gestures), but which uses few modeling parameters. To establish the overall robustness and accuracy of the recognition system, five new users and one expert were asked to perform ten instances of each gesture. The system accurately recognized 85% of gestures for new users, increasing to 96% for the expert user. In both cases, false positives accounted for fewer than 4% of all detections. These error rates compare favourably to those of similar systems.
66

Improvements in the Accuracy of Pairwise Genomic Alignment

Hudek, Alexander Karl January 2010 (has links)
Pairwise sequence alignment is a fundamental problem in bioinformatics with wide applicability. This thesis presents three new algorithms for this well-studied problem. First, we present a new algorithm, RDA, which aligns sequences in small segments, rather than by individual bases. Then, we present two algorithms for aligning long genomic sequences: CAPE, a pairwise global aligner, and FEAST, a pairwise local aligner. RDA produces interesting alignments that can be substantially different in structure than traditional alignments. It is also better than traditional alignment at the task of homology detection. However, its main negative is a very slow run time. Further, although it produces alignments with different structure, it is not clear if the differences have a practical value in genomic research. Our main success comes from our local aligner, FEAST. We describe two main improvements: a new more descriptive model of evolution, and a new local extension algorithm that considers all possible evolutionary histories rather than only the most likely. Our new model of evolution provides for improved alignment accuracy, and substantially improved parameter training. In particular, we produce a new parameter set for aligning human and mouse sequences that properly describes regions of weak similarity and regions of strong similarity. The second result is our new extension algorithm. Depending on heuristic settings, our new algorithm can provide for more sensitivity than existing extension algorithms, more specificity, or a combination of the two. By comparing to CAPE, our global aligner, we find that the sensitivity increase provided by our local extension algorithm is so substantial that it outperforms CAPE on sequence with 0.9 or more expected substitutions per site. CAPE itself gives improved sensitivity for sequence with 0.7 or more expected substitutions per site, but at a great run time cost. FEAST and our local extension algorithm improves on this too, the run time is only slightly slower than existing local alignment algorithms and asymptotically the same.
67

A Design of Speech Recognition System for the Mandarin Toponyms

Wei, Hong-jhang 31 August 2006 (has links)
In this thesis, a Mandarin toponym speech recognition system is developed using MFCC, LPC and HMM under Red Hat Linux 9.0. The system is based on monosyllable HMM's to select the initial toponym candidates, and its final classification result can be obtained by further pitch identification mechanisms. For speaker-dependent case, a 90% correct rate can be achieved approximately and the recognition process can be accomplished within 1.5 seconds on the average.
68

Stochastic modeling of vehicle trajectory during lane-changing

Nishiwaki, Yoshihiro, Miyajima, Chiyomi, Kitaoka, Hidenori, Takeda, Kazuya 19 April 2009 (has links)
No description available.
69

A design of speaker-independent medium-size phrase recognition system

Lai, Zhao-Hua 12 September 2002 (has links)
There are a lot of difficulties that have to be overcome in the speaker-independent (S.I.) phrase recognition system . And the feasibility of accurate ,real-time and robust system pose of the greatest challenges in the system. In this thesis ,the speaker-independent phase recognition system is based on Hidden Markov Model (HMM). HMM has been proved to be of great value in many applications, notably in speech recognition. HMM is a stochastic approach which characterizes many of the variability in speech signal. It applys the state-of-the-art approach to Automatic Speech Recognition .
70

A Design of Speech Recognition System for Chinese Names

Chen, Yu-Te 11 August 2003 (has links)
A design of speech recognition system for Chinese names has been established in this thesis. By identifying surname first, that is an unique feature of the Chinese names, the classification accuracy and computational time of the system can be greatly improved. This research is primarily based on hidden Markov model (HMM), a technique that is widely used in speech recognition. HMM is a doubly stochastic process describing the ways of pronumciation by recording the state transitions according to the time-varing properties of the speech signal. The results of the HMM are compared with those of the segmental probability model (SPM) to figure out better option in recognizing base-syllables. Under the conditions of equal segments, SPM not only suits Mandarin base-syllable structure, but also achieves the goal of simplifying system since it does not need to find the best transformation of the utterance. A speaker-independent 3000 Chinese names recognition system has been implemented based on the Mandarin microphone database recorded in the laboratory environment.

Page generated in 0.0455 seconds