• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 278
  • 53
  • 44
  • 35
  • 31
  • 13
  • 10
  • 9
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 582
  • 582
  • 313
  • 251
  • 134
  • 92
  • 84
  • 67
  • 57
  • 54
  • 51
  • 44
  • 42
  • 40
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

New statistical Methods of Genome-Scale Data Analysis in Life Science - Applications to enterobacterial Diagnostics, Meta-Analysis of Arabidopsis thaliana Gene Expression and functional Sequence Annotation

Friedrich, Torben January 2009 (has links)
Würzburg, Univ., Diss., 2009. / Zsfassung in dt. Sprache.
32

Modelle mit generalisierter bedingter autoregressiver Heteroskedastie und Anwendungen in der Kapitalmarkttheorie

Oelker, Jens-Christian. Unknown Date (has links) (PDF)
Techn. Universiẗat, Diss., 2004--Berlin.
33

Bayesian and predictive techniques for speaker adaptation

Ahadi-Sarkani, Seyed Mohammad January 1996 (has links)
No description available.
34

Automatic Extraction of Highlights from a Baseball Video Using HMM and MPEG-7 Descriptors

Saudagar, Abdullah Naseer Ahmed 05 1900 (has links)
In today’s fast paced world, as the number of stations of television programming offered is increasing rapidly, time accessible to watch them remains same or decreasing. Sports videos are typically lengthy and they appeal to a massive crowd. Though sports video is lengthy, most of the viewer’s desire to watch specific segments of the video which are fascinating, like a home-run in a baseball or goal in soccer i.e., users prefer to watch highlights to save time. When associated to the entire span of the video, these segments form only a minor share. Hence these videos need to be summarized for effective presentation and data management. This thesis explores the ability to extract highlights automatically using MPEG-7 features and hidden Markov model (HMM), so that viewing time can be reduced. Video is first segmented into scene shots, in which the detection of the shot is the fundamental task. After the video is segmented into shots, extraction of key frames allows a suitable representation of the whole shot. Feature extraction is crucial processing step in the classification, video indexing and retrieval system. Frame features such as color, motion, texture, edges are extracted from the key frames. A baseball highlight contains certain types of scene shots and these shots follow a particular transition pattern. The shots are classified as close-up, out-field, base and audience. I first try to identify the type of the shot using low level features extracted from the key frames of each shot. For the identification of the highlight I use the hidden Markov model using the transition pattern of the shots in time domain. Experimental results suggest that with reasonable accuracy highlights can be extracted from the video.
35

Integration of multiple feature sets for reducing ambiguity in automatic speech recognition

MomayyezSiahkal, Parya. January 2008 (has links)
No description available.
36

Phoneme Recognition by hidden Markov modeling

Brighton, Andrew P. January 1989 (has links)
No description available.
37

Predicting the Functional Effects of Human Short Variations Using Hidden Markov Models

Liu, Mingming 24 June 2015 (has links)
With the development of sequencing technologies, more and more sequence variants are available for investigation. Different types of variants in the human genome have been identified, including single nucleotide polymorphisms (SNPs), short insertions and deletions (indels), and large structural variations such as large duplications and deletions. Of great research interest is the functional effects of these variants. Although many programs have been developed to predict the effect of SNPs, few can be used to predict the effect of indels or multiple variants, such as multiple SNPs, multiple indels, or a combination of both. Moreover, fine grained prediction of the functional outcome of variants is not available. To address these limitations, we developed a prediction framework, HMMvar, to predict the functional effects of coding variants (SNPs or indels), using profile hidden Markov models (HMMs). Based on HMMvar, we proposed HMMvar-multi to explore the joint effects of multiple variants in the same gene. For fine grained functional outcome prediction, we developed HMMvar-func to computationally define and predict four types of functional outcome of a variant: gain, loss, switch, and conservation of function. / Ph. D.
38

Improving the performance of Hierarchical Hidden Markov Models on Information Extraction tasks

Chou, Lin-Yi January 2006 (has links)
This thesis presents novel methods for creating and improving hierarchical hidden Markov models. The work centers around transforming a traditional tree structured hierarchical hidden Markov model (HHMM) into an equivalent model that reuses repeated sub-trees. This process temporarily breaks the tree structure constraint in order to leverage the benefits of combining repeated sub-trees. These benefits include lowered cost of testing and an increased accuracy of the final model-thus providing the model with greater performance. The result is called a merged and simplified hierarchical hidden Markov model (MSHHMM). The thesis goes on to detail four techniques for improving the performance of MSHHMMs when applied to information extraction tasks, in terms of accuracy and computational cost. Briefly, these techniques are: a new formula for calculating the approximate probability of previously unseen events; pattern generalisation to transform observations, thus increasing testing speed and prediction accuracy; restructuring states to focus on state transitions; and an automated flattening technique for reducing the complexity of HHMMs. The basic model and four improvements are evaluated by applying them to the well-known information extraction tasks of Reference Tagging and Text Chunking. In both tasks, MSHHMMs show consistently good performance across varying sizes of training data. In the case of Reference Tagging, the accuracy of the MSHHMM is comparable to other methods. However, when the volume of training data is limited, MSHHMMs maintain high accuracy whereas other methods show a significant decrease. These accuracy gains were achieved without any significant increase in processing time. For the Text Chunking task the accuracy of the MSHHMM was again comparable to other methods. However, the other methods incurred much higher processing delays compared to the MSHHMM. The results of these practical experiments demonstrate the benefits of the new method-increased accuracy, lower computation costs, and better performance.
39

Voice query-by-example for resource-limited languages using an ergodic hidden Markov model of speech

Ali, Asif 13 January 2014 (has links)
An ergodic hidden Markov model (EHMM) can be useful in extracting underlying structure embedded in connected speech without the need for a time-aligned transcribed corpus. In this research, we present a query-by-example (QbE) spoken term detection system based on an ergodic hidden Markov model of speech. An EHMM-based representation of speech is not invariant to speaker-dependent variations due to the unsupervised nature of the training. Consequently, a single phoneme may be mapped to a number of EHMM states. The effects of speaker-dependent and context-induced variation in speech on its EHMM-based representation have been studied and used to devise schemes to minimize these variations. Speaker-invariance can be introduced into the system by identifying states with similar perceptual characteristics. In this research, two unsupervised clustering schemes have been proposed to identify perceptually similar states in an EHMM. A search framework, consisting of a graphical keyword modeling scheme and a modified Viterbi algorithm, has also been implemented. An EHMM-based QbE system has been compared to the state-of-the-art and has been demonstrated to have higher precisions than those based on static clustering schemes.
40

Enhancements in Markovian Dynamics

Ali Akbar Soltan, Reza 12 April 2012 (has links)
Many common statistical techniques for modeling multidimensional dynamic data sets can be seen as variants of one (or multiple) underlying linear/nonlinear model(s). These statistical techniques fall into two broad categories of supervised and unsupervised learning. The emphasis of this dissertation is on unsupervised learning under multiple generative models. For linear models, this has been achieved by collective observations and derivations made by previous authors during the last few decades. Factor analysis, polynomial chaos expansion, principal component analysis, gaussian mixture clustering, vector quantization, and Kalman filter models can all be unified as some variations of unsupervised learning under a single basic linear generative model. Hidden Markov modeling (HMM), however, is categorized as an unsupervised learning under multiple linear/nonlinear generative models. This dissertation is primarily focused on hidden Markov models (HMMs). On the first half of this dissertation we study enhancements on the theory of hidden Markov modeling. These include three branches: 1) a robust as well as a closed-form parameter estimation solution to the expectation maximization (EM) process of HMMs for the case of elliptically symmetrical densities; 2) a two-step HMM, with a combined state sequence via an extended Viterbi algorithm for smoother state estimation; and 3) a duration-dependent HMM, for estimating the expected residency frequency on each state. Then, the second half of the dissertation studies three novel applications of these methods: 1) the applications of Markov switching models on the Bifurcation Theory in nonlinear dynamics; 2) a Game Theory application of HMM, based on fundamental theory of card counting and an example on the game of Baccarat; and 3) Trust modeling and the estimation of trustworthiness metrics in cyber security systems via Markov switching models. As a result of the duration dependent HMM, we achieved a better estimation for the expected duration of stay on each regime. Then by robust and closed form solution to the EM algorithm we achieved robustness against outliers in the training data set as well as higher computational efficiency in the maximization step of the EM algorithm. By means of the two-step HMM we achieved smoother probability estimation with higher likelihood than the standard HMM. / Ph. D.

Page generated in 0.0454 seconds