• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Generation and Validation of di-Higgs events in the 4τ final state

Vaheid, Halimeh January 2018 (has links)
The Higgs self-coupling has a vital role by giving a deeper understanding of the Higgs particle. Furthermore, the way it opens to physics beyond the SM, encourages us to do MC simulationstudies for varying λ_hhh . In this project, we investigate the effects of choosing different values for λ_hhh on the kinematics of all particles involved in the hh → τ τ τ τ decay channel and the resultsare compared with what we get from the SM prediction of λ_hhh .The data show that λ_hhh more close to the SM trilinear Higgs self-coupling results in generatingthe Higgs particles with the higher masses and higher momenta. On the other hand, for the moremassive Higgs bosons we have more energetic neutrinos in the final states which escape from thedetector without being detected.
2

Theoretical and Experimental Aspects of the Higgs Mechanism in the Standard Model and Beyond

Baas, Alessandra Edda 01 January 2010 (has links) (PDF)
The Standard Model of particle physics is the best existing theory for describing the interactions between elementary particles. Even though the Standard Model has been confirmed in many experiments, there remain unanswered questions. One of the main questions is how fermions and most gauge bosons get masses; the Standard Model begins with them as massless. The Higgs effect is a mechanism to explain how fermions and several gauge bosons do get masses in the Standard Model. The corresponding Higgs boson is the only particle that has not yet been detected. This Thesis gives a complete review of the Higgs effect and Higgs related topics. It starts with theoretical basics and develops the theory of the Higgs effect within the electroweak section of the Standard Model. The discussion then considers the topics of radiative corrections and the effect of the Higgs boson as a virtual particle, concentrating on the example of the rho-parameter. In addition, experimental and theoretical constraints for the Higgs mass M_H will be given with special emphasis on the Hierarchy Problem which leads to a physically unacceptable Higgs mass when using high energies (of the Grand Unification scale) as a cutoff for the radiative corrections. Furthermore experimental attempts to detect the Higgs boson at LEP2, TEVATRON and LHC will be described and the different decay channels discussed. Finally, alternative theoretical models beyond the Standard Model are motivated and presented, such as supersymmetry, a vectorlike Standard Model and a possible relation between the Higgs and the Inflaton of Cosmology.

Page generated in 0.0729 seconds