• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 340
  • 189
  • 134
  • 56
  • 45
  • 44
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 926
  • 926
  • 926
  • 404
  • 395
  • 351
  • 351
  • 329
  • 325
  • 320
  • 319
  • 316
  • 314
  • 313
  • 313
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
281

Power Saving Analysis and Experiments for Large Scale Global Optimization

Cao, Zhenwei 03 August 2009 (has links)
Green computing, an emerging field of research that seeks to reduce excess power consumption in high performance computing (HPC), is gaining popularity among researchers. Research in this field often relies on simulation or only uses a small cluster, typically 8 or 16 nodes, because of the lack of hardware support. In contrast, System G at Virginia Tech is a 2592 processor supercomputer equipped with power aware components suitable for large scale green computing research. DIRECT is a deterministic global optimization algorithm, implemented in the mathematical software package VTDIRECT95. This thesis explores the potential energy savings for the parallel implementation of DIRECT, called pVTdirect, when used with a large scale computational biology application, parameter estimation for a budding yeast cell cycle model, on System G. Two power aware approaches for pVTdirect are developed and compared against the CPUSPEED power saving system tool. The results show that knowledge of the parallel workload of the underlying application is beneficial for power management. / Master of Science
282

Enabling the use of Heterogeneous Computing for Bioinformatics

Bijanapalli Chakri, Ramakrishna 02 October 2013 (has links)
The huge amount of information in the encoded sequence of DNA and increasing interest in uncovering new discoveries has spurred interest in accelerating the DNA sequencing and alignment processes. The use of heterogeneous systems, that use different types of computational units, has seen a new light in high performance computing in recent years; However expertise in multiple domains and skills required to program these systems is causing an hindrance to bioinformaticians in rapidly deploying their applications into these heterogeneous systems. This work attempts to make an heterogeneous system, Convey HC-1, with an x86-based host processor and FPGA-based co-processor, accessible to bioinformaticians. First, a highly efficient dynamic programming based Smith-Waterman kernel is implemented in hardware, which is able to achieve a peak throughput of 307.2 Giga Cell Updates per Second (GCUPS) on Convey HC-1. A dynamic programming accelerator interface is provided to any application that uses Smith-Waterman. This implementation is also extended to General Purpose Graphics Processing Units (GP-GPUs), which achieved a peak throughput of 9.89 GCUPS on NVIDIA GTX580 GPU. Second, a well known graphical programming tool, LabVIEW is enabled as a programming tool for the Convey HC-1. A connection is established between the graphical interface and the Convey HC-1 to control and monitor the application running on the FPGA-based co-processor. / Master of Science
283

Scalable Data Management for Object-based Storage Systems

Wadhwa, Bharti 19 August 2020 (has links)
Parallel I/O performance is crucial to sustain scientific applications on large-scale High-Performance Computing (HPC) systems. Large scale distributed storage systems, in particular the object-based storage systems, face severe challenges for managing the data efficiently. Inefficient data management leads to poor I/O and storage performance in HPC applications and scientific workflows. Some of the main challenges for efficient data management arise from poor resource allocation, load imbalance in object storage targets, and inflexible data sharing between applications in a workflow. In addition, parallel I/O makes it challenging to shoehorn new interfaces, such as taking advantage of multiple layers of storage and support for analysis in the data path. Solving these challenges to improve performance and efficiency of object-based storage systems is crucial, especially for upcoming era of exascale systems. This dissertation is focused on solving these major challenges in object-based storage systems by providing scalable data management strategies. In the first part of the dis-sertation (Chapter 3), we present a resource contention aware load balancing tool (iez) for large scale distributed object-based storage systems. In Chapter 4, we extend iez to support Progressive File Layout for object-based storage system: Lustre. In the second part (Chapter 5), we present a technique to facilitate data sharing in scientific workflows using object-based storage, with our proposed tool Workflow Data Communicator. In the last part of this dissertation, we present a solution for transparent data management in multi-layer storage hierarchy of present and next-generation HPC systems.This dissertation shows that by intelligently employing scalable data management techniques, scientific applications' and workflows' flexibility and performance in object-based storage systems can be enhanced manyfold. Our proposed data management strategies can guide next-generation HPC storage systems' software design to efficiently support data for scientific applications and workflows. / Doctor of Philosophy / Large scale object-based storage systems face severe challenges to manage the data efficiently for HPC applications and workflows. These storage systems often manage and share data inflexibly, without considering the load imbalance and resource contention in the underlying multi-layer storage hierarchy. This dissertation first studies how resource contention and inflexible data sharing mechanisms impact HPC applications' storage and I/O performance; and then presents a series of efficient techniques, tools and algorithms to provide efficient and scalable data management for current and next-generation HPC storage systems
284

On the Use of Containers in High Performance Computing

Abraham, Subil 09 July 2020 (has links)
The lightweight, portable, and flexible nature of containers is driving their widespread adoption in cloud solutions. Data analysis and deep learning applications have especially benefited from containerized solutions. As such data analysis is also being utilized in the high performance computing (HPC) domain, the need for container support in HPC has become paramount. However, container adoption in HPC face crucial performance and I/O challenges. One obstacle is that while there have been container solutions for HPC, such solutions have not been thoroughly investigated, especially from the aspect of their impact on the crucial I/O throughput needs of HPC. To this end, this paper provides a first-of-its-kind empirical analysis of state-of-the-art representative container solutions (Docker, Podman, Singularity, and Charliecloud) in HPC environments, especially how containers interact with the HPC storage systems. We present the design of an analysis framework that is deployed on all nodes in an HPC environment, and captures aspects such as CPU, memory, network, and file I/O statistics from the nodes and the storage system. We are able to garner key insights from our analysis, e.g., Charliecloud outperforms other container solutions in terms of container start-up time, while Singularity and Charliecloud are equivalent in I/O throughput. But this comes at a cost, as Charliecloud invokes the most metadata and I/O operations on the underlying Lustre file system. By identifying such optimization opportunities, we can enhance performance of containers atop HPC and help the aforementioned applications. / Master of Science / Containers are a technology that allow for applications to be packaged along with its ideal environment, all the way down to its preferred operating system. This allows an application to run anywhere that can support containers without a huge hit to the application performance. Hence containers have seen wide adoption for use in the cloud. These qualities have also made it very appealing for use in the world of scientific research in national labs. Modern research heavily relies on the power of computing in order to model, simulate, and test the behavior of real world entities, often making use of large amounts of data and utilizing machine learning and deep learning. Doing this often requires the high performance computing power found in supercomputers. In most cases, scientists just want to be able to write their code and expect it to just work. Their applications might depend on other source code that form part of their standard toolkit and would expect to also be installed in the supercomputing environment. This may not always be the case, taking the scientist's focus away from their work in order ensure their requirements are set up in the supercomputing environment which might require extensive cooperation with the operations team responsible for the supercomputers. Containers easily solve this problem because it can package everything together. However, the use of containers in these environments have not been extensively tested, especially for applications that are very heavy on the analysis of large quantities of data. To fill this gap, this work analyzes the performance of several state-of-the-art container technologies (Docker, Podman, Singularity, Charliecloud), with a particular focus on its interaction with the Lustre data storage systems widely used in supercomputing environments. As part of this work, we design an analysis setup that captures the behavior of various aspects of the high performance computing environment like CPU, memory, network usage and data movement while using containers to run data heavy applications. We garner important insights about their performance that can help inform the best choice of container technology given an environment and the kind of application that needs to be run.
285

Interpolants, Error Bounds, and Mathematical Software for Modeling and Predicting Variability in Computer Systems

Lux, Thomas Christian Hansen 23 September 2020 (has links)
Function approximation is an important problem. This work presents applications of interpolants to modeling random variables. Specifically, this work studies the prediction of distributions of random variables applied to computer system throughput variability. Existing approximation methods including multivariate adaptive regression splines, support vector regressors, multilayer perceptrons, Shepard variants, and the Delaunay mesh are investigated in the context of computer variability modeling. New methods of approximation using Box splines, Voronoi cells, and Delaunay for interpolating distributions of data with moderately high dimension are presented and compared with existing approaches. Novel theoretical error bounds are constructed for piecewise linear interpolants over functions with a Lipschitz continuous gradient. Finally, a mathematical software that constructs monotone quintic spline interpolants for distribution approximation from data samples is proposed. / Doctor of Philosophy / It is common for scientists to collect data on something they are studying. Often scientists want to create a (predictive) model of that phenomenon based on the data, but the choice of how to model the data is a difficult one to answer. This work proposes methods for modeling data that operate under very few assumptions that are broadly applicable across science. Finally, a software package is proposed that would allow scientists to better understand the true distribution of their data given relatively few observations.
286

Characterization of Sparsity-aware Optimization Paths for Graph Traversal on FPGA

Gondhalekar, Atharva 25 May 2023 (has links)
Breath-first search (BFS) is a fundamental building block in many graph-based applications, but it is difficult to optimize for a field-programmable gate array (FPGA) due to its irregular memory-access patterns. Prior work, based on hardware description languages (HDLs) and high-level synthesis (HLS), address the memory-access bottleneck of BFS by using techniques such as data alignment and compute-unit replication on FPGAs. The efficacy of such optimizations depends on factors such as the sparsity of target graph datasets. Optimizations intended for sparse graphs may not work as effectively for dense graphs on an FPGA and vice versa. This thesis presents two sets of FPGA optimization strategies for BFS, one for near-hypersparse graphs and the other designed for sparse to moderately dense graphs. For near-hypersparse graphs, a queue-based kernel with maximal use of local memory on FPGA is implemented. For denser graphs, an array-based kernel with compute-unit replication is implemented. Across a diverse collection of graphs, our OpenCL optimization strategies for near-hypersparse graphs delivers a 5.7x to 22.3x speedup over a state-of-the-art OpenCL implementation, when evaluated on an Intel Stratix~10 FPGA. The optimization strategies for sparse to moderately dense graphs deliver 1.1x to 2.3x speedup over a state-of-the-art OpenCL implementation on the same FPGA. Finally, this work uses graph metrics such as average degree and Gini coefficient to observe the impact of graph properties on the performance of the proposed optimization strategies. / M.S. / A graph is a data structure that typically consists of two sets -- a set of vertices and a set of edges representing connections between the vertices. Graphs are used in a broad set of application domains such as the testing and verification of digital circuits, data mining of social networks, and analysis of road networks. In such application areas, breadth-first search (BFS) is a fundamental building block. BFS is used to identify the minimum number of edges needed to be traversed from a source vertex to one or many destination vertices. In recent years, several attempts have been made to optimize the performance of BFS on reconfigurable architectures such as field-programmable gate arrays (FPGAs). However, the optimization strategies for BFS are not necessarily applicable to all types of graphs. Moreover, the efficacy of such optimizations oftentimes depends on the sparsity of input graphs. To that end, this work presents optimization strategies for graphs with varying levels of sparsity. Furthermore, this work shows that by tailoring the BFS design based on the sparsity of the input graph, significant performance improvements are obtained over the state-of-the-art BFS implementations on an FPGA.
287

Parallel Algorithms for Switching Edges and Generating Random Graphs from Given Degree Sequences using HPC Platforms

Bhuiyan, Md Hasanuzzaman 09 November 2017 (has links)
Networks (or graphs) are an effective abstraction for representing many real-world complex systems. Analyzing various structural properties of and dynamics on such networks reveal valuable insights about the behavior of such systems. In today's data-rich world, we are deluged by the massive amount of heterogeneous data from various sources, such as the web, infrastructure, and online social media. Analyzing this huge amount of data may take a prohibitively long time and even may not fit into the main memory of a single processing unit, thus motivating the necessity of efficient parallel algorithms in various high-performance computing (HPC) platforms. In this dissertation, we present distributed and shared memory parallel algorithms for some important network analytic problems. First, we present distributed memory parallel algorithms for switching edges in a network. Edge switch is an operation on a network, where two edges are selected randomly, and one of their end vertices are swapped with each other. This operation is repeated either a given number of times or until a specified criterion is satisfied. It has diverse real-world applications such as in generating simple random networks with a given degree sequence and in modeling and studying various dynamic networks. One of the steps in our edge switch algorithm requires generating multinomial random variables in parallel. We also present the first non-trivial parallel algorithm for generating multinomial random variables. Next, we present efficient algorithms for assortative edge switch in a labeled network. Assuming each vertex has a label, an assortative edge switch operation imposes an extra constraint, i.e., two edges are randomly selected and one of their end vertices are swapped with each other if the labels of the end vertices of the edges remain the same as before. It can be used to study the effect of the network structural properties on dynamics over a network. Although the problem of assortative edge switch seems to be similar to that of (regular) edge switch, the constraint on the vertex labels in assortative edge switch leads to a new difficulty, which needs to be addressed by an entirely new algorithmic approach. We first present a novel sequential algorithm for assortative edge switch; then we present an efficient distributed memory parallel algorithm based on our sequential algorithm. Finally, we present efficient shared memory parallel algorithms for generating random networks with exact given degree sequence using a direct graph construction method, which involves computing a candidate list for creating an edge incident on a vertex using the Erdos-Gallai characterization and then randomly creating the edges from the candidates. / Ph. D. / Network analysis has become a popular topic in many disciplines including social sciences, epidemiology, biology, and business as it provides valuable insights about many real-world systems represented as networks. The recent advancement of science and technology has resulted in a massive growth of such networks, and mining and processing such massive networks poses significant challenges, which can be addressed by various high-performance computing (HPC) platforms. In this dissertation, we present parallel algorithms for a few network analytic problems using HPC platforms. Random networks are widely used for modeling many complex real-world systems such as the Internet, biological, social, and infrastructure networks. Most prior work on generating random graphs involves sequential algorithms, and they can be broadly categorized in two classes: (i) edge switching and (ii) stub-matching. We present parallel algorithms for generating random graphs using both the edge switching and stub-matching methods. Our parallel algorithms for switching edges can generate random networks with billions of edges in a few minutes with 1024 processors. We have studied several load balancing methods to equally distribute workload among the processors to achieve the best performance. The parallel algorithm for generating random graphs using the stub-matching method also shows good speedup for medium-sized networks. We believe the proposed parallel algorithms will prove useful in analyzing and mining of emerging networks.
288

Impact of data dependencies for real-time high performance computing.

Hossain, M. Alamgir, Kabir, U., Tokhi, M.O. January 2002 (has links)
No / This paper presents an investigation into the impact of data dependencies in real-time high performance sequential and parallel processing. An adaptive active vibration control algorithm is considered to demonstrate the impact of data dependencies in real-time computing. The algorithm is analysed in detail to explore the inherent data dependencies. To minimize the impact of data dependencies, an investigation into reducing memory access in sequential computing is provided. The impact of data dependencies with various interconnections is also explored and demonstrated in real-time parallel processing through a set of experiments.
289

Toward full-stack in silico synthetic biology: integrating model specification, simulation, verification, and biological compilation

Konur, Savas, Mierla, L.M., Fellermann, H., Ladroue, C., Brown, B., Wipat, A., Twycross, J., Dun, B.P., Kalvala, S., Gheorghe, Marian, Krasnogor, N. 02 August 2021 (has links)
Yes / We present the Infobiotics Workbench (IBW), a user-friendly, scalable, and integrated computational environment for the computer-aided design of synthetic biological systems. It supports an iterative workflow that begins with specification of the desired synthetic system, followed by simulation and verification of the system in high- performance environments and ending with the eventual compilation of the system specification into suitable genetic constructs. IBW integrates modelling, simulation, verification and bicompilation features into a single software suite. This integration is achieved through a new domain-specific biological programming language, the Infobiotics Language (IBL), which tightly combines these different aspects of in silico synthetic biology into a full-stack integrated development environment. Unlike existing synthetic biology modelling or specification languages, IBL uniquely blends modelling, verification and biocompilation statements into a single file. This allows biologists to incorporate design constraints within the specification file rather than using decoupled and independent formalisms for different in silico analyses. This novel approach offers seamless interoperability across different tools as well as compatibility with SBOL and SBML frameworks and removes the burden of doing manual translations for standalone applications. We demonstrate the features, usability, and effectiveness of IBW and IBL using well-established synthetic biological circuits. / The work of S.K. is supported by EPSRC (EP/R043787/1). N.K., A.W., and B.B. acknowledge a Royal Academy of Engineering Chair in Emerging Technologies award and an EPSRC programme grant (EP/N031962/1).
290

Energy and Performance Models Enabling Design Space Exploration using Domain Specific Languages

Umar, Mariam 25 May 2018 (has links)
With the advent of exascale architectures maximizing performance while maintaining energy consumption within reasonable limits has become one of the most critical design constraints. This constraint is particularly significant in light of the power budget of 20 MWatts set by the U.S. Department of Energy for exascale supercomputing facilities. Therefore, understanding an application's characteristics, execution pattern, energy footprint, and the interactions of such aspects is critical to improving the application's performance as well as its utilization of the underlying resources. With conventional methods of analyzing performance and energy consumption trends scientists are forced to limit themselves to a manageable number of design parameters. While these modeling techniques have catered to the needs of current high-performance computing systems, the complexity and scale of exascale systems demands that large-scale design-space-exploration techniques are developed to enable comprehensive analysis and evaluations. In this dissertation we present research on performance and energy modeling of current high performance computing and future exascale systems. Our thesis is focused on the design space exploration of current and future architectures, in terms of their reconfigurability, application's sensitivity to hardware characteristics (e.g., system clock, memory bandwidth), application's execution patterns, application's communication behavior, and utilization of resources. Our research is aimed at understanding the methods by which we may maximize performance of exascale systems, minimize energy consumption, and understand the trade offs between the two. We use analytical, statistical, and machine-learning approaches to develop accurate, portable and scalable performance and energy models. We develop application and machine abstractions using Aspen (a domain specific language) to implement and evaluate our modeling techniques. As part of our research we develop and evaluate system-level performance and energy-consumption models that form part of an automated modeling framework, which analyzes application signatures to evaluate sensitivity of reconfigurable hardware components for candidate exascale proxy applications. We also develop statistical and machine-learning based models of the application's execution patterns on heterogeneous platforms. We also propose a communication and computation modeling and mapping framework for exascale proxy architectures and evaluate the framework for an exascale proxy application. These models serve as external and internal extensions to Aspen, which enable proxy exascale architecture implementations and thus facilitate design space exploration of exascale systems. / Ph. D. / Performance monitoring and modeling has been an extensively researched topic over the last decade. The traditional approaches of manually modeling performance and energy worked well for previous generation computers. With the prevalence of complex high-performance computers, clusters and the anticipation of future exascale architectures, the conventional modeling approaches will not be sufficient. A number of reasons limit the conventional modeling approaches, e.g, complexity of current and future architectures, increase in number of performance parameters to monitor, diversity in the architecture etc. This issue will worsen with the advent of exascale architectures that encompasses complex micro-architectures along with the increases in scale that have never been encountered in the computing industry before. In this dissertation, we focus on two primary aspects of performance and energy modeling in the context of current high performance computing and future exascale architectures. We focus on adapting conventional modeling approaches to comprise the properties of accuracy, scalability, portability and independence of architectures. Centered around performance and energy improvements, we also develop design space exploration techniques that study the effects of application performance improvement in terms of reconfigurable hardware. We also quantitatively measure the effects of application performance sensitivity with changing hardware configurations – using analytical and machine learning modeling techniques. We explore theoretical exascale architecture, and validate it for performance limits. We develop a communication and computation model for the proxy exascale architecture and test it for strong and weak scaling for co-design for molecular dynamics.

Page generated in 0.1081 seconds