• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Type IV crack characterisation and modelling of high chromium ferritic steel weldments

Sun, Ben Shuang January 2005 (has links)
In this thesis, the heat affected zone (HAZ) of Gleeble simulated welds, the weldments and the creep specimens for several types of 9%-12% Cr ferritic steels were studied by focusing on the Type IV cracking in the fine grained zone (FZ). The field emission gun transmission electron microscopy (FEGTEM) and scanning electron microscopy (SEM) were used to measure the phosphorus segregation on the grain boundary (GB) and the creep fracture morphologies respectively. Meanwhile the well-developed grain boundary segregation and precipitation (GBSP) model was applied to simulate the experimental results. The experimental results have showed that the HAZ zone was characterised by softening and Type IV cracking. All the high Cr ferritic steel welds gave a microstructure of mainly tempered martensite and M23C6 precipitates after the post weld heat treatment (PWHT). There was no δ-ferrite observed in the HAZ. The Type IV cracking exhibited a mixed cracking mechanism in which the intergranular grain boundary separation is dominant due to the crack initiation by voids and the faster M23C6 growth with the service time. A new model on the mechanism of the Type IV cracking is established. The FEGTEM research has also showed obvious non-equilibrium phosphorus segregation at the grain boundaries, which is affected significantly by the quenching temperature. The phosphorus GB segregation deteriorates the weak grain boundaries. The experimental results were well in agreement with the GBSP modelling.
2

Inclusions and/or Particles Engineering for Grain Refining Purposes in Ferritic Fe-20mass%Cr alloys

Janis, Jesper January 2010 (has links)
Compared to more common used austenitic stainless steels, ferritic stainless steels contain very low amounts of the expensive alloying element Ni. In addition, they have good corrosion properties, but are sometimes suffering from poor weldability and bad mechanical properties. This is mainly due to the presence of large grains after casting and large grain growth during heat treatment or welding. Processes for reducing the grain size (grain refining) of metal alloys are widely known and proven before to be suitable for many alloys. A successful grain refining process can increase the strength of an alloy without decreasing the ductility. This can be achieved by different methods, such as rolling or cooling. In this work, the focus has been on studying the aspect from a metallurgist point of view, to analyse the possibilities to create small particles in the liquid stage to enhance the solidification. The focus has been on oxide and nitride formation for nucleation of smaller grains during solidification. This study was made by forming particles, develop the analysis methods and thereafter to study the effect of particles on the structure of a ferritic stainless steel. The particles were formed by additions of Ti, Ce and Zr in to a liquid Fe-20mass% Cr alloy containing different amounts of oxygen and nitrogen. The electrolytic extraction technique was used to achieve a good understanding of the reaction processes and the particles size, number, composition and morphology. The grain sizes and the particles were then studied in as-cast samples as well as in specimens heat treated for 60 minutes at 1200, 1300 and 1400°C in a Confocal Scanning Laser Microscope (CSLM). Also, based on Scanning Electron Microscope (SEM) determinations and Thermo-Calc calculations, the precipitated particles were divided as primary and secondary particles. Thereafter, the grain refining potential was studied for each of these types. In this work, particles engineering by using small particles have been proven suitable for the Fe-20mass% Cr ferritic stainless steel alloys. Although the work has been based on small-scale samples and experiments, the results show good tendencies with respect to grain refining as well as a clear relationship between the particles in the steels and the microstructures. It was found that Ti-Ce additions in Fe-20mass% Cr alloys resulted in complex oxides including Ti, Ce and Cr. These oxides were observed to have high agglomeration tendencies and therefore to form larger particles or clusters. The grain refining potential on the solidification structure was insignificant, despite a relatively large amount of particles. However, Ti-Zr additions in Fe- 20mass% Cr alloys on the other hand resulted in primary precipitated particles such as ZrO2 and ZrO2+ZrN. Furthermore, ZrN nucleated ferrite during solidification, which lead to a clearly observed grain refining effect. This effect was also increased with an increased number of particles. The amount of particles (primary and secondary) was also found to increase with an increased amount of nitrogen. Secondary particles (mostly TiN) were precipitated near grain boundaries, which lead to a location based pinning effect of the grain growth during heat treatment at 1200 °C. This pinning effect was increased by an increased nitrogen content and thereby an increased number of particles. Finally, the pinning effect was clearly reduced during heat treatment at 1400 °C. / QC20100524
3

Weldability Evaluation of High-Cr Ni-Base Filler Metals using the Cast Pin Tear Test

Przybylowicz, Eric Thomas 20 May 2015 (has links)
No description available.

Page generated in 0.0419 seconds