• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design of the Miniature High Impedance Surface Structure to Reduce Metallic Effect on the RFID Tag Antenna

Lee, Jui-Ni 24 July 2008 (has links)
ABSTRACT In this study, the properties of the high impedance surface structure are studied. We proceed to design the low profile and miniature high impedance surface structure. In order to conform to the IC chips of RFID and reduce the influence of metal objects, we add a layer of electromagnetic band-gap (EBG) structure on the back of the antenna. The EBG behaves as a high impedance surface, similar to a perfect magnetic conductor. This property of the EBG structure is able to isolate the antenna and backside environment and reduce the metallic effect. In order to achieve the requirements of small size and low cost on RFID tag antenna, we design the miniature, low profile and low cost high impedance surface structure. In this study, we use the slots and chip capacitance to miniaturize the dimension. Both approaches can reduce the influence of metallic objects. Although using slots can reduce the metallic effect, it does not have the advantage of low profile. Using chip capacitor can miniaturize the dimension and reduce metallic effect effectively. It also has advantages of low profile, low cost and low sensitivity to the frequency of the tag antenna. Finally, the high impedance surface structures are fabricated and measured when they combine with the tag antenna attached to the metallic object. The measured results agree with simulated ones well.
2

Design of the RFID Tag Antenna to Reduce Metallic Effect of Three Metallic Plates

Chang, Chih-ming 15 July 2009 (has links)
In this thesis, the design rule of the tag antenna and the properties of the high impedance surface structure are studied. We proceed to design the low profile and miniature high impedance surface structure. In order to be more competitive, we use PCB plates for fabrication to reduce the cost. The tags are intended to be placed inside two shorted metallic plates. In order to reduce the effect of the two parallel metallic plates, we use the slots to design the tag antenna. The EBG structure behaves as a high impedance surface and suppresses the surface wave. We add the EBG structure on the back of the antenna to reduce the back metallic effect. We use slot structure to design the non-planar RFID reader antenna that can be placed inside the three metallic plates to read the data. For the slot structure design, the electric field between the slots is perpendicular to the upper and lower metallic plates. According to the image theory, the induced image current will result in constructive effect to reduce the metallic effect. Finally, the hand-held RFID reader may not identify the RFID tag as the RFID tag placed at position deeper inside. The proposed non-planar reader can solve this problem to be used for more applications.

Page generated in 0.079 seconds