• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Laser-induced Incandescence of Soot at High Pressures

Ghasemi, Sanaz 20 November 2012 (has links)
Measurements of soot emission properties are of interest in both fundamental research and combustion-based industries. Laser-induced incandescence of soot particles is a novel technique that allows unobtrusive measurements of both soot volume fraction and particulate size with significant advantages. An apparatus utilizing this technique has been customized and used to provide measurements of soot concentration and particle sizing of a laminar, diffusion methane/air flame at pressures of 10, 20 and 40 atm at 6~mm above the burner. Soot volume fraction measurements correlate well with literature findings at all pressures. Despite similar trends, particle size values are found to be consistently larger than values reported in literature. Discussion on the errors of laser-induced incandescence as well as recommendations for improving the apparatus and results are herein.
2

Laser-induced Incandescence of Soot at High Pressures

Ghasemi, Sanaz 20 November 2012 (has links)
Measurements of soot emission properties are of interest in both fundamental research and combustion-based industries. Laser-induced incandescence of soot particles is a novel technique that allows unobtrusive measurements of both soot volume fraction and particulate size with significant advantages. An apparatus utilizing this technique has been customized and used to provide measurements of soot concentration and particle sizing of a laminar, diffusion methane/air flame at pressures of 10, 20 and 40 atm at 6~mm above the burner. Soot volume fraction measurements correlate well with literature findings at all pressures. Despite similar trends, particle size values are found to be consistently larger than values reported in literature. Discussion on the errors of laser-induced incandescence as well as recommendations for improving the apparatus and results are herein.

Page generated in 0.0912 seconds