Spelling suggestions: "subject:"high redshift galaxies"" "subject:"high redshift alaxies""
1 |
The Space Density, Environments, and Physical Properties of Large Ly α NebulaePrescott, Moire Kathleen Murphy January 2009 (has links)
Powerful forces are at work in giant Ly α nebulae, a rare and mysterious population in the high redshift universe. Much like the spatially extended emission line halos around high redshift radio galaxies . but without the strong radio emission . Ly α nebulae (or Ly α 'blobs') boast copious Ly α emission (10⁴⁴ erg s⁻¹), large sizes (∼100 kpc), complex gas morphologies, and the company of numerous compact, star-forming galaxies, and may offer a window into dramatic episodes of massive galaxy formation. The small sample sizes and complex inner workings of Ly α nebulae have limited progress on understanding the their space density, environments, and physical conditions. This thesis strives to answer fundamental questions about Ly α nebulae and pave the way for understanding their role in the build up of massive galaxy systems. To address the frequency of collapse of these massive structures, we carried out the largest systematic Ly α nebula survey to date and measured the Ly α nebula space density. As an unbiased test of the environment of Ly α nebulae, we studied the surroundings of a Ly α nebula and confirmed that Ly α nebulae reside preferentially in overdense regions. To disentangle the sources of ionization, we took a census of all the compact ionization sources within a large Ly α nebula using high resolution imaging. Finally, we used photoionization modeling to put constraints on the physical conditions, the metallicity, and the sources of ionization within Ly α nebulae. Future work will be able to build on this thesis by expanding the systematic search for Ly α nebulae to other existing deep broad-band datasets, mapping the three-dimensional overdense structures in which Ly α nebulae live out to ≥ 50 (comoving) Mpc scales, and disentangling multiple sources of ionization within a larger sample of individual systems using deep optical and near-infrared spectroscopy and detailed photoionization modeling.
|
2 |
High redshift star-forming galaxies in absorption and emissionQuider, Anna Marie January 2011 (has links)
Galaxies in the redshift range 1 < z < 3 existed during the most vigorous period of star formation in the history of the Universe. In the past 15 years, large rest-frame UV spectroscopic samples of z ~ 3 star-forming galaxies have been assembled. However, this particular redshift range, the so-called Redshift Desert, has only begun to be characterized. Most studies involve low resolution, low signal-to-noise spectra because the small angular size (δ ≤ 1") and faintness (RAB = 24 - 25.5) of high redshift galaxies limit what can be accomplished with a reasonable investment of observing time, even using the world's largest optical telescopes. One way to circumvent these two issues is to study gravitationally lensed galaxies. The magnification boost (up to a factor of 30x) and morphological distortion of a high redshift galaxy by an intervening mass concentration allow for the study of the high redshift Universe in unprecedented detail. I present a detailed analysis of the rest-UV spectrum of two gravitationally lensed galaxies: the 'Cosmic Horseshoe' (zsys = 2.38115) and the 'Cosmic Eye' (zsys = 3.07331). The characterization of the stellar populations and the interstellar gas geometry, kinematics, and composition which I achieve is a preview of the type of information that will be available for unlensed high redshift galaxies with the next generation of optical telescopes. I probe the lower redshift end of the Redshift Desert with a study of Fe ii and Mg ii features in the rest-frame near-UV spectrum of 96 star-forming galaxies in the redshift range 1 < z < 2. Stacked spectra are used to explore average outflow and line profile trends with stellar mass and reddening. I also investigate the phenomenon of emission filling of absorption lines which has implications for the line strength and velocity offset of interstellar absorption lines. Individual galaxies are used to assess the range of outflow velocities as well as the prevalence of emission filling in galaxies from this epoch. This is the first large scale study of fine-structure emission from Feii in high redshift galaxies, both in stacked and individual galaxy spectra. An alternative to investigating galaxies by collecting their light is to study them as seen in absorption against a cosmic backlight, such as a quasar. The Sloan Digital Sky Survey, an imaging and spectroscopic survey which covers about one-quarter of the night sky, has collected many thousands of quasar spectra. I search ~ 44,600 of these spectra, up through Data Release 4, for Mg ii λλ2796,2803 absorption doublets. The final catalog includes ~ 16700 Mgii absorption line systems in the redshift range 0.36 ≤ z ≤ 2.28. Measurements of the absorption redshift and rest equivalent widths of the Mg ii doublet as well as select metal lines are available in the catalog. This is the largest publicly available catalog of its kind and its combination of large size and well understood statistics make it ideal for precision studies of the low-ionization and neutral gas regions of galaxies. I conclude this thesis by suggesting several avenues for extending the studies of high redshift star-forming galaxies presented herein.
|
3 |
Bright Z ~ 3 Lyman Break Galaxies in Deep Wide Field SurveysBian, Fuyan January 2013 (has links)
In my thesis I investigate the luminous z ~ 3 Lyman break galaxies in deep wide field surveys. In the first part of the thesis, I use the LBT/LUCIFER to observe a lensed high-redshift star-forming galaxy (J0900+2234) at z = 2.03. With the high S/N near-IR spectroscopic observations, I reveal the detailed physical properties of this high-redshift galaxy, including SFR, metallicity, dust extinction, dynamical mass, and electron number density. In the second part of the thesis, I select a large sample of LBGs at z ~ 3 from our new LBT Bootes field survey, and study the bright end luminosity function (LF), stellar mass function (SMF) and clustering properties of bright LBGs (1L* < L < 2.5L*). Together with other LF and SMF measurements, the evolution of LF and SMF can be well described by continuously rising star formation history model. Using the clustering measurements in this work and other works, a tight relation between the average host galaxy halo mass and the galaxy star formation rate is found, which can be interpreted as arising from cold flow accretion. The relation also suggests that the cosmic star formation efficiency is about 5%-20% of the total cold flow mass. This cosmic star formation efficiency does not evolve with redshift (from z ~ 5 to z ~ 3), hosting dark matter halo mass (10¹¹-10¹³ M⊙), or galaxy luminosity (from 0.3L* to 3L*).In the third and fourth parts, with the spectroscopic follow-up observations of the bright LBGs, I establish a sample of spectroscopically-confirmed ultra-luminous LBGs (ULBGs) in NOAO Bootes field. With this new ULBG sample, the rest-frame UV LF of LBG at M(1700Å) = -23.0 was measured for the first time. I find that the ULBGs have larger outflow velocity, broader Lyα emission and ISM absorption line profiles, and more prominent CIV P-Cygni profile. This profile may imply a top-heavy IMF in these ULBGs. The ULBGs have larger stellar mass and SFR, but smaller dust extinction than the typical L* LBGs at z ~ 2 - 3. We proposed two evolutionary scenarios, pre-burst and post-burst. The properties of the ULBGs, especially the morphologies, prefer the pre-starburst scenario. Further high spatial resolution HST imaging and IFU spectroscopic observations will allow us to distinguish these two scenarios.
|
4 |
A broad-band study of the evolving emission-line properties of galaxiesFerreira, João Pedro de Jesus January 2018 (has links)
This thesis describes a new approach to the study of high-redshift star-formation and its environments that can be applied to large high-redshift surveys. Instead of relying on spectroscopy or narrow-band photometry to study galaxy line emission in detail, the properties of large emission line galaxy (ELG)populations are estimated from broadband photometry by measuring colour-residuals against colours drawn from a set of line-free stochastic burst models-based on (Bruzual & Charlot, 2003). Simulated star-formation histories drawn from semi-analytic and adaptive-mesh-refinement codes were converted into mock galaxy colours, but neither could-span the range of observed galaxy colours at high redshift. Instead, an existing set of exponentially declining star-formation models with stochastic bursts was used, because it closely spanned the range in observed galaxy colours in the bandsthat were line-free at each redshift. Small colour offsets were measured between the models and the observations, corresponding to the equivalent widths (EWs)of Hα, [OIII] and [OII]. In this way, I measure the rest-frame Equivalent Widths of the Hα, [OIII]and [OII] emission lines as they are redshifted through all filters from CANDELS(near-continuous U to 4.5μm coverage) for a large sample of galaxies from z=0.1up to z=5. This approach relies solely on the line-free models, a set of existing reliable photometric redshifts, and a colour cut (B−K < 2 or equivalent) to select only the dust-free young objects (the majority of identified emission-line galaxies). Once correctly identified, I apply this method to the CANDELS-UDS photometry to characterise the properties of Emission-Line Galaxies (ELGs) through these lines. I find that in this sample the Hα and [OIII] ELG fraction with EW > 150Årises from < 5% at z < 1 up to 40% at z > 2. The co-moving ELG density rises from 5 to 30 ×10 −4 /Mpc −3 at z=2.3. The evolution of median Hα EW with redshift is consistent with results from HiZELS and 3D-HST yielding median EW ∼ M 0.25 (1+z) 1.75 up to z=2.3, from which it departs to values of 450Å atz=4.3. [OIII] remains weaker than Hα for z < 3 and matches its values above that redshift. [OIII] also displays a larger fraction of extreme EWs than Hα. [OII], while correctly identified, never becomes as extreme as the other two lines lines, even when corrected for the evolving continuum. This is evidence of an increasing [OIII]/[OII] ratio with increasing z through-out this sample. While these results agree with spectroscopic and narrow-band surveys, the use of the deeper broadband filter coverage enables a systematic measurement of the increasingly prevalent high EWs ( > 500Å) in galaxies at every redshift spanning the 10 8 to 10 10.5 M range. Subsequently, this method was applied to all the other CANDELS fields (GOODS-South and North, COSMOS and EGS) and further corroborates these results. These results further show that EW dependence on mass is steeper for [OIII] than for Hα. Line EWs are then converted into luminosities for the three lines and fitting formulas are obtained, displaying L Hα ∼(1+z) 3.2 M 0.45−0.6log(1+z), with similar results for the other lines. L Hα is converted into star-formation rate and specific star-formation rate (sSFR). sSFR at low-z aligns approximately with the main sequence (with a steeper dependence in mass), but at high-redshift sSFR remains above the main sequence by a factor of 2 and rising towards medians SFR=100/Gyr around log(M/M )=9, showing a departure of the main sequence of star formation at lower masses log(M/M ) < 9.5. The SFRD of ELGs is 1% at low redshift, but rises to 30% at z=4.5. The L [OIII] /L Hα ratio is used to estimate L [OIII] /L Hβ and the ionization parameter q, for which the median atz > 0.5 stays approximately constant at 10 8 cm/s, and increases with mass. Using the L [OIII] /L [OII] ratio and q, median metallicity is shown to be sub-solar, and can be tentatively estimated for z > 0.5 to be Z/Z ∼0.3. The errors are large, but this could also mean a large range in metallicity from Z to 0.1Z . L [OIII] /L [OII] rises with sSFR as shown in the literature. This method shows great potential to survey emission-line-derived physical quantities for large galaxy populations with a low computational footprint, which could be particularly useful for pixel-by-pixel EW imaging. It is also flexibile, which allows it to be applied to any future deep multi-broadband fields.
|
5 |
H-α Emitting Galaxies at z ∼ 0.6 in the Deep And Wide Narrowband SurveyJanuary 2017 (has links)
abstract: New measurements of the Hα luminosity function (LF) and star formation rate
(SFR) volume density are presented for galaxies at z∼0.62 in the COSMOS field.
These results are part of the Deep And Wide Narrowband Survey (DAWN), a unique
infrared imaging program with large areal coverage (∼1.1 deg 2 over 5 fields) and
sensitivity (9.9 × 10 −18 erg/cm 2 /s at 5σ).
The present sample, based on a single DAWN field, contains 116 Hα emission-
line candidates at z∼0.62, 25% of which have spectroscopic confirmations. These
candidates have been selected through comparison of narrow and broad-band images
in the infrared and through matching with existing catalogs in the COSMOS field.
The dust-corrected LF is well described by a Schechter function with L* = 10 42.64±0.92
erg s −1 , Φ* = 10 −3.32±0.93 Mpc −3 (L* Φ* = 10 39.40±0.15 ), and α = −1.75 ± 0.09. From
this LF, a SFR density of ρ SF R =10 −1.37±0.08 M○ yr −1 Mpc −3 was calculated. An
additional cosmic variance uncertainty of ∼ 20% is also expected. Both the faint
end slope and luminosity density that are derived are consistent with prior results at
similar redshifts, with reduced uncertainties.
An analysis of these Hα emitters’ sizes is also presented, showing a direct corre-
lation between the galaxies’ sizes and their Hα emission. / Dissertation/Thesis / Masters Thesis Astrophysics 2017
|
6 |
Radio active galactic nuclei in galaxy clusters: feedback, merger signatures, and cluster tracersPaterno-Mahler, Rachel Beth 28 November 2015 (has links)
Galaxy clusters, the largest gravitationally-bound structures in the universe, are composed of 50-1000s of galaxies, hot X-ray emitting gas, and dark matter. They grow in size over time through cluster and group mergers. The merger history of a cluster can be imprinted on the hot gas, known as the intracluster medium (ICM). Merger signatures include shocks, cold fronts, and sloshing of the ICM, which can form spiral structures. Some clusters host double-lobed radio sources driven by active galactic nuclei (AGN). First, I will present a study of the galaxy cluster Abell 2029, which is very relaxed on large scales and has one of the largest continuous sloshing spirals yet observed in the X-ray, extending outward approximately 400 kpc. The sloshing gas interacts with the southern lobe of the radio galaxy, causing it to bend. Energy injection from the AGN is insufficient to offset cooling. The sloshing spiral may be an important additional mechanism in preventing large amounts of gas from cooling to very low temperatures. Next, I will present a study of Abell 98, a triple system currently undergoing a merger. I will discuss the merger history, and show that it is causing a shock. The central subcluster hosts a double-lobed AGN, which is evacuating a cavity in the ICM. Understanding the physical processes that affect the ICM is important for determining the mass of clusters, which in turn affects our calculations of cosmological parameters. To further constrain these parameters, as well as models of galaxy evolution, it is important to use a large sample of galaxy clusters over a range of masses and redshifts. Bent, double-lobed radio sources can potentially act as tracers of galaxy clusters over wide ranges of these parameters. I examine how efficient bent radio sources are at tracing high-redshift (z>0.7) clusters. Out of 646 sources in our high-redshift Clusters Occupied by Bent Radio AGN (COBRA) sample, 282 are candidate new, distant clusters of galaxies based on measurements of excess galaxy counts surrounding the radio sources in Spitzer infrared images.
|
7 |
Probing galaxy evolution by unveiling the structure of massive galaxies across cosmic time and in diverse environmentsWeinzirl, Timothy Michael 13 September 2013 (has links)
How galaxies form and evolve is one of the primary outstanding problems in extragalactic astronomy. I conduct a quantitative census of the relative importance of the major structural components (flattened and dynamically cold disk-dominated components versus puffy and dynamically hot spheroidal or triaxial bulges/ellipticals) in massive galaxies over cosmic time and across different environments in order to explore how galaxies evolve under the action of the various assembly mechanisms (major mergers, minor mergers, gas accretion, and internal secular processes) in these different regimes. I perform three inter-related analyses focusing on massive galaxies from z ~ 0 - 3 in both field and rich cluster environments. Important strengths of this thesis include the use of high-resolution, panchromatic imaging from some of the largest and deepest galaxy surveys with the Hubble Space Telescope (HST), Spitzer, and Chandra space telescopes, and also the inclusion of detailed comparisons between the empirical data and hierarchical ΛCDM-based models of galaxy evolution. / text
|
8 |
Physically Modeling High-Redshift Ultraluminous Infrared GalaxiesHayward, Christopher 02 January 2013 (has links)
We have used a combination of hydrodynamical simulations, dust radiative transfer, and an empirically based analytical model for galaxy number densities and merger rates in order to physically model the bright high-redshift submillimeter-selected galaxy (SMG) population. We report the results of three projects: In the first we study the dependence of a galaxy’s observed-frame submillimeter (submm) flux on its physical properties. One of our principal conclusions is that the submm flux scales significantly more weakly with star formation rate for starbursts than for quiescently star-forming galaxies. Consequently, we argue that the SMG population is not exclusively merger-induced starbursts but rather a mix of merger-induced starbursts, early-stage mergers where two quiescently star-forming disk galaxies are blended into one submm source ("galaxy-pair SMGs"), and isolated disk galaxies. In the second work we present testable predictions of this model by demonstrating how
quiescently star-forming and starburst SMGs can be distinguished from integrated data alone. Starbursts tend to have higher luminosity, effective dust temperature, global star formation efficiency \((L_{IR}/M_{gas})\), and infrared excess \((L_{IR}/L_{FUV})\) and tend to lie significantly above the star formation rate-stellar mass relation defined by quiescently star-forming galaxies. These diagnostics can be used to observationally
determine the relative contribution of quiescently star-forming and starburst galaxies to the SMG population. In the final work we present the SMG number density, cumulative number counts, and redshift distribution predicted by our model. We show that, contrary to previous claims, the observed SMG number counts do not provide evidence for a top-heavy initial mass function. We also show that starbursts and galaxy-pair SMGs both contribute significantly to the bright SMG counts, whereas isolated disks contribute significantly only at the faint end. / Astronomy
|
9 |
Metal Strong Damped Lyman Alpha Systems And Their Context With The Local GroupBerg, Trystyn Andrew Munro 29 April 2014 (has links)
Damped Lyman α systems (DLAs) are useful probes of the chemical enrichment of the universe as they provide accurate abundance measurements of many chemical species. Using a sample of 30 DLAs (with large metal column densities) observed with the High Resolution Echelle Spectrometer on the Keck I telescope, the abundances of several elements (i.e. iron, zinc, chromium, silicon, sulphur, phosphorus, manganese, and boron) are derived and presented. A comparison is drawn between the abundances from these metal-rich DLAs with literature samples encompassing the largest compilation of high resolution observations of other DLAs, and stars from the Milky Way and its satellite galaxies to understand the astrophysical nature of DLAs.
Furthermore, the first ever extragalactic study of boron is presented. Using the sample of 30 metal-rich DLAs, two 3σ detections and one near detection 2.97σ) were found. From the comparison of [B/O] and, for the first time, [B/S], with studies in the Milky Way, there appears to be an excess of boron relative to its parent nucleus (oxygen) in these three DLA systems, suggesting that there may be a higher cosmic ray flux in DLAs than in the Milky Way. / Graduate / 0606
|
10 |
Metal Strong Damped Lyman Alpha Systems And Their Context With The Local GroupBerg, Trystyn Andrew Munro 29 April 2014 (has links)
Damped Lyman α systems (DLAs) are useful probes of the chemical enrichment of the universe as they provide accurate abundance measurements of many chemical species. Using a sample of 30 DLAs (with large metal column densities) observed with the High Resolution Echelle Spectrometer on the Keck I telescope, the abundances of several elements (i.e. iron, zinc, chromium, silicon, sulphur, phosphorus, manganese, and boron) are derived and presented. A comparison is drawn between the abundances from these metal-rich DLAs with literature samples encompassing the largest compilation of high resolution observations of other DLAs, and stars from the Milky Way and its satellite galaxies to understand the astrophysical nature of DLAs.
Furthermore, the first ever extragalactic study of boron is presented. Using the sample of 30 metal-rich DLAs, two 3σ detections and one near detection 2.97σ) were found. From the comparison of [B/O] and, for the first time, [B/S], with studies in the Milky Way, there appears to be an excess of boron relative to its parent nucleus (oxygen) in these three DLA systems, suggesting that there may be a higher cosmic ray flux in DLAs than in the Milky Way. / Graduate / 0606
|
Page generated in 0.059 seconds