Spelling suggestions: "subject:"high resolution upwind scheme"" "subject:"igh resolution upwind scheme""
1 |
Um esquema upwind polinomial por partes para problemas em mecânica dos fluidos / A piecewise polynomial upwind scheme for problems in fluid mechanicsSartori, Patrícia 20 April 2011 (has links)
Este trabalho de pesquisa é dedicado ao desenvolvimento, análise e implementação de um novo esquema upwind de alta resolução (denominada PFDPUS) para a aproximação de termos convectivos em leis de conservação e problemas relacionados em mecânica dos fluídos. Usando variáveis normalizadas de Leonard, o equema PFDPUS é baseado em uma função polinomial por partes que satisfaz os critérios de estabilidade CBC e TVD. O desempenho do esquema PEDPUS é investigado na solução das equações de advecção de escalares, Burgers, Euler e MHD. O novo esquema é então aplicado para simular escoamentos incompressíveis envolvendo superfícies livres móveis. Para tanto, o esquema PFDPUS é implementado dentro do software CLAWPACK para problemas compressíveis, e no código Freeflow para poblemas incompressíveis. Os resultados numéricos são comparados com dados experimentais, numéricos e analíticos / This work is dedicated to the development, analysis and implementation of a new high-resolution upwind scheme (called PFDPUS) for approximation of convective terms in conservation laws and related fluid mechanics problems. By using the normalized variables of Leonard, the PFDPUS scheme is based on a piecewise polynomical function that satisfies the CBC and TVD stability criteria. The performance of the PFDPUS scheme is assessed by solving advection of scalars, Burgers, Euler and MHD equations. Then the new scheme is applied to simulate incompressible flows involving moving free surfaces. The PFDPUS scheme is implemented into the CLAWPACK software for compressible problems, and in the Freeflow code for incompressible problems. The numerical results are compared with experimental, numerical and analytical data
|
2 |
Um esquema upwind polinomial por partes para problemas em mecânica dos fluidos / A piecewise polynomial upwind scheme for problems in fluid mechanicsPatrícia Sartori 20 April 2011 (has links)
Este trabalho de pesquisa é dedicado ao desenvolvimento, análise e implementação de um novo esquema upwind de alta resolução (denominada PFDPUS) para a aproximação de termos convectivos em leis de conservação e problemas relacionados em mecânica dos fluídos. Usando variáveis normalizadas de Leonard, o equema PFDPUS é baseado em uma função polinomial por partes que satisfaz os critérios de estabilidade CBC e TVD. O desempenho do esquema PEDPUS é investigado na solução das equações de advecção de escalares, Burgers, Euler e MHD. O novo esquema é então aplicado para simular escoamentos incompressíveis envolvendo superfícies livres móveis. Para tanto, o esquema PFDPUS é implementado dentro do software CLAWPACK para problemas compressíveis, e no código Freeflow para poblemas incompressíveis. Os resultados numéricos são comparados com dados experimentais, numéricos e analíticos / This work is dedicated to the development, analysis and implementation of a new high-resolution upwind scheme (called PFDPUS) for approximation of convective terms in conservation laws and related fluid mechanics problems. By using the normalized variables of Leonard, the PFDPUS scheme is based on a piecewise polynomical function that satisfies the CBC and TVD stability criteria. The performance of the PFDPUS scheme is assessed by solving advection of scalars, Burgers, Euler and MHD equations. Then the new scheme is applied to simulate incompressible flows involving moving free surfaces. The PFDPUS scheme is implemented into the CLAWPACK software for compressible problems, and in the Freeflow code for incompressible problems. The numerical results are compared with experimental, numerical and analytical data
|
3 |
Um esquema \"upwind\" para leis de conservação e sua aplicação na simulação de escoamentos incompressíveis 2D e 3D laminares e turbulentos com superfícies livres / The \"upwind\" scheme to the conservation laws and their application in simulation of 2D and 3D incompressible laminar and turbulent flows with free surfacesKurokawa, Fernando Akira 26 February 2009 (has links)
Apesar de as EDPS que modelam leis de conservação e problemas em dinâmica dos fluídos serem bem estabelecidas, suas soluções numéricas continuam ainda desafiadoras. Em particular, há dois desafios associados à computação e ao entendimento desses problemas: um deles é a formação de descontinuidades (choques) e o outro é o fenômeno turbulência. Ambos os desafios podem ser atribuídos ao tratamento dos termos advectivos não lineares nessas equações de transporte. Dentro deste canário, esta tese apresenta o estudo do desenvolvimento de um novo esquema \"upwind\" de alta resolução e sua associação com modelagem da turbulência. O desempenho do esquema é investigado nas soluções da equação de advecção 1D com dados iniciais descontínuos e de problemas de Riemann 1D para as equações de Burgers, Euler e águas rasas. Além disso, são apresentados resultados numéricos de escoamentos incompressíveis 2D e 3D no regime laminar a altos números de Reynolds. O novo esquema é então associado à modelagem \'capa\' - \'epsilon\' da turbulência para a simulação numérica de escoamentos incompressíveis turbulentos 2D e 3D com superfícies livres móveis. Aplicação, verificação e validação dos métodos numéricos são também fornecidas / Althought the PDEs that model conservation laws and fluid dynamics problems are well established, their numerical solutions have presented a continuing challenge. In particular, there are two challenges associated with the computation and the understanding of these problems, namely, formation of shocks and turbulence. Both challenges can be attributed to the nonlinear advection terms of these transport equations. In this scenario, this thesis presents the study of the development of a new high-resolution upwind scheme and its association with turbulence modelling. The performance of the scheme is investigated by solving the 1D advection equation with discontinuous initial data 1D Riemann problems for Burgers, Euler and shallow water equations. Besides, numerical results for 2D and 3D incompressible laminar flows at high Reynolds number are presented. The new scheme is then associated with the \'capa - \' epsilon\' turbulence model for the simulation of 2D and 3D incompressible turbulent flows with moving free surfaces. Application, verification and validation of the numerical methods are also provided
|
4 |
Um esquema \"upwind\" para leis de conservação e sua aplicação na simulação de escoamentos incompressíveis 2D e 3D laminares e turbulentos com superfícies livres / The \"upwind\" scheme to the conservation laws and their application in simulation of 2D and 3D incompressible laminar and turbulent flows with free surfacesFernando Akira Kurokawa 26 February 2009 (has links)
Apesar de as EDPS que modelam leis de conservação e problemas em dinâmica dos fluídos serem bem estabelecidas, suas soluções numéricas continuam ainda desafiadoras. Em particular, há dois desafios associados à computação e ao entendimento desses problemas: um deles é a formação de descontinuidades (choques) e o outro é o fenômeno turbulência. Ambos os desafios podem ser atribuídos ao tratamento dos termos advectivos não lineares nessas equações de transporte. Dentro deste canário, esta tese apresenta o estudo do desenvolvimento de um novo esquema \"upwind\" de alta resolução e sua associação com modelagem da turbulência. O desempenho do esquema é investigado nas soluções da equação de advecção 1D com dados iniciais descontínuos e de problemas de Riemann 1D para as equações de Burgers, Euler e águas rasas. Além disso, são apresentados resultados numéricos de escoamentos incompressíveis 2D e 3D no regime laminar a altos números de Reynolds. O novo esquema é então associado à modelagem \'capa\' - \'epsilon\' da turbulência para a simulação numérica de escoamentos incompressíveis turbulentos 2D e 3D com superfícies livres móveis. Aplicação, verificação e validação dos métodos numéricos são também fornecidas / Althought the PDEs that model conservation laws and fluid dynamics problems are well established, their numerical solutions have presented a continuing challenge. In particular, there are two challenges associated with the computation and the understanding of these problems, namely, formation of shocks and turbulence. Both challenges can be attributed to the nonlinear advection terms of these transport equations. In this scenario, this thesis presents the study of the development of a new high-resolution upwind scheme and its association with turbulence modelling. The performance of the scheme is investigated by solving the 1D advection equation with discontinuous initial data 1D Riemann problems for Burgers, Euler and shallow water equations. Besides, numerical results for 2D and 3D incompressible laminar flows at high Reynolds number are presented. The new scheme is then associated with the \'capa - \' epsilon\' turbulence model for the simulation of 2D and 3D incompressible turbulent flows with moving free surfaces. Application, verification and validation of the numerical methods are also provided
|
Page generated in 0.1084 seconds