• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 2
  • Tagged with
  • 14
  • 14
  • 14
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization of the Dynamic Strength of Aluminium at Extreme Strain Rates and Pressures

January 2017 (has links)
abstract: The study of response of various materials to intense dynamic loading events, such as shock loading due to high-velocity impacts, is extremely important in a wide variety of military and industrial applications. Shock loading triggers extreme states, leading to high pressures and strain rates, and neglecting strength is a typical approximation under such conditions. However, recent results have shown that strength effects are larger than expected, so they must be taken into account. Recently, hydrodynamic instabilities, the most common being the Rayleigh-Taylor (RTI) and Richtmyer-Meshkov (RMI) instabilities, have been used to infer the dynamic strength of materials at high pressure conditions. In our experiments and simulations, a novel RMI approach is used, in which periodic surface perturbations are made on high purity aluminium target, which was laser ablated to create a rippled shock front. Due to the slow linear growth rate of RMI, the evolution of the perturbations on the back surface of the sample as a result of the rippled shock can be measured via Transient Imaging Displacement Interferometry (TIDI). The velocity history at the free surface was recorded by spatially resolved laser velocimetry. These measurements were compared with the results from the simulations, which were implemented using rate independent and rate dependent material models, to characterize the dynamic strength of the material. Simulations using the elastic-perfectly plastic model, which is rate independent, failed to provide a value of dynamic yield strength that would match experimental measurements of perturbation amplitudes. The Preston-Tonks-Wallace (PTW) model, which is rate dependent model, worked well for aluminium. This model was, in turn, used as a reference for calibrating the rate dependent Steinberg-Lund model and the results from simulations using the calibration models were also compared to experimental measurements. / Dissertation/Thesis / Masters Thesis Mechanical Engineering 2017
2

On the response of rubbers at high strain rates

Niemczura, Johnathan Greenberg 26 May 2010 (has links)
The purpose of this study is to examine the propagation of waves of finite deformation in rubbers through experiments and analysis. First, attention is focused on the propagation of one-dimensional dispersive waves in strips of latex and nitrile rubber. Tensile wave propagation experiments were conducted at high strain-rates by holding one end fixed and displacing the other end at a constant velocity. A high-speed video camera was used to monitor the motion and to determine the evolution of strain and particle velocity in rubber strips. Analysis of the response through the theory of finite wave propagation indicated a need for an appropriate constitutive model for rubber; by quantitative matching between the experimental observations and analytical predictions, an appropriate instantaneous elastic response for the rubbers was obtained. This matching process suggested that a simple power-law constitutive model was capable of representing the high strain-rate response for both rubbers used. Next, the propagation of one-dimensional shock waves in strips of latex and nitrile rubber is examined. Shock waves have been generated under tensile impact in pre-stretched rubber strips; analysis of the response yields the tensile shock adiabat for rubbers. The propagation of shocks is analyzed by developing an analogy with the theory of detonation. Attention is then focused on the propagation of unloading waves of finite deformation in a rubber specimen analytically and experimentally. A rubber strip stretched to many times its initial length is released at one end and the resulting unloading is examined. Dispersive waves as well as shock waves are observed in these experiments. Quantitative discrepancies between the analytical model and experimental observations are again used to motivate a power-law model. Hysteresis in the response is attributed to strain-induced crystallization and melting phase transitions in natural latex rubber, and to nonequilibrium microstructural deformation in nitrile rubber. Finally, a Kolsky experiment is conducted and analyzed under the framework of dispersive loading and unloading waves utilized in the previous experiments. In this experiment, a phase boundary is introduced separating low and high strain phases of the rubber and is demonstrated to persist as a stationary boundary in latex rubber. / text
3

Performance of multi-component polymers at high strain rates

Prudom, Andrew January 2012 (has links)
More and more, advanced polymer and composite materials are being applied in engineering situations where a high resistance to loading at high rates of strain, such as by impact or blast deformation, are a vital requirement. Specific examples exist in the fields of defence and sport research and development for personal, and in the case of the former, vehicular, protection. There are obvious advantages to the use of polymer materials for these applications in augmenting the more widely used metals and ceramics, most notably the evident reduction in weight, and it is believed that with suitable nano-reinforcement these materials may exhibit improved combat survivability. The current study concerns the effect that nano-reinforcements in the form of Carbon Black, Titanium Dioxide, Exfoliated Hectorite Nanoclay and Carbon Nanotubes; have upon the high strain rate mechanical properties of structural variants of Polyethylene (Linear Low Density Polyethylene, LLDPE; High Density Polyethylene, HDPE; Ultra-High Molecular Weight Polyethylene, UHMWPE) and blends of UHMWPE and HDPE. The testing samples were manufactured using a novel process developed in the Loughborough University Materials Department, which has produced well-dispersed specimens. The formed nanocomposite samples were studied using an in-house four-bar Split Hopkinson Pressure Bar (SHPB) system for high strain rate performance, instrumented dropweight for intermediate strain rates and a conventional commercial Hounsfield H50KM universal testing machine for quasi-static strain rate compressive tests. The experimental results recorded for un-reinforced materials are used as a reference to allow comparative analysis of any effect the nano-reinforcements or the blending process have upon the structure, performance and properties of the composite material. From the mechanical testing, it was seen that the stress-strain behaviour of Polyethylene is highly strain-rate-dependent, as plots of the average representative yield stress as a function of strain rate show a bilinear relationship when plotted on a logarithmic strain rate scale, with the gradient of the curve rising sharply at around 103s-1. Concerning the addition of the nanofiller materials, it was seen that there was an increase in the flow and yield stresses and the energy absorption characteristics of the resulting composite with the magnitude dependent upon whether it was a pure or blended polymer that was reinforced. Of the aforementioned fillers it was seen that the addition of Carbon Nanotubes in the small concentrations studied resulted in the greatest increase in properties compared to the pure polymers, closely followed by the Carbon Black fillers. Also of note, the un-reinforced blended samples showed significant increases in flow stress, yield stress and energy absorption when compared to the constituent UHMWPE and HDPE polymers. Additionally, a complete set of Differential Scanning Calorimetry and density measurements were made before testing to assess any changes in the properties after reinforcement or blending, and to help in the interpretation of the results from the different mechanical tests.
4

Projeto e construção de um dispositivo para ensaio de impacto em materiais, barra de compressão / Design and construction of a device for impact test materials, compression bar

Todesco, Sérgio Roberto 17 November 2015 (has links)
Esta dissertação apresenta um projeto de um dispositivo para levantar dados característicos de materiais submetidos às altas taxas de deformação, dispositivo este que leva o nome do seu idealizador o engenheiro Inglês Sir Bertram Hopkinson. Mais especificamente, esta dissertação está inseparavelmente ligada ao desenvolvimento de um embalado para transporte de elementos radioativos como sendo uma das partes do escopo geral, de um projeto da CAPES em convênio com o Centro de Ciência e Tecnologia de Materiais - CCTM do, Instituto de Pesquisas Energéticas e Nucleares IPEN - CNEN/SP, autarquia associada à Universidade de São Paulo. O desenvolvimento do dispositivo faz parte do escopo de obtenção, e levantamento dos dados necessários para o projeto, e a construção do embalado. Esta dissertação versa sobre a concepção mecânica do dispositivo, importante, dividida em duas partes, dimensionamento das barras, que seriam a barra de impacto, a barra de entrada, e a barra de saída, e o dimensionamento do dispositivo de impacto. O dimensionamento das barras envolve conhecimentos do conceito de ondas elásticas em meios sólidos para que o comprimento das barras seja estimado de forma a servir de guia das ondas elásticas, que provocarão a deformação no corpo de prova, e possibilite a boa leitura dessas ondas para análise dos dados. O dispositivo de impacto, este tem que ser robusto o suficiente para produzir a onda de tensão que deforme o corpo de prova, mas não para deformar plasticamente as barras, que terão que continuar durante todo o teste dentro do regime elástico. / This dissertation presents a design of a device to collect characteristic data of materials submitted to the high strain rates, device that takes the name of its idealizer the English engineer Sir Bertram Hopkinson. More specifically, this dissertation is inseparably linked to the development of a package for the transport of radioactive elements as part of the general scope of a CAPES project in partnership with the Materials Science and Technology Center (CCTM), Nuclear and Energy Research Institute IPEN - CNEN / SP, autarchy associated with the University of São Paulo. The development of the device is part of the scope of procurement, and collection of data required for the design, and the construction of the packaging. This dissertation deals with the mechanical design of the device, important, divided into two parts, dimensioning of the bars, which would be the impact bar, the input and output bars and the design of the impact device. The sizing of the bars involves knowledge of the concept of elastic waves in solid media so that the length of the bars is estimated in order to serve as a guide for the elastic waves, which will cause deformation in the test body, and enable a good reading of these waves for analysis of the data. The impact device has to be robust enough to produce the stress wave that deforms the test body but not to deform the bars plastically, which will have to continue throughout the test within the elastic regime.
5

Projeto e construção de um dispositivo para ensaio de impacto em materiais, barra de compressão / Design and construction of a device for impact test materials, compression bar

Sérgio Roberto Todesco 17 November 2015 (has links)
Esta dissertação apresenta um projeto de um dispositivo para levantar dados característicos de materiais submetidos às altas taxas de deformação, dispositivo este que leva o nome do seu idealizador o engenheiro Inglês Sir Bertram Hopkinson. Mais especificamente, esta dissertação está inseparavelmente ligada ao desenvolvimento de um embalado para transporte de elementos radioativos como sendo uma das partes do escopo geral, de um projeto da CAPES em convênio com o Centro de Ciência e Tecnologia de Materiais - CCTM do, Instituto de Pesquisas Energéticas e Nucleares IPEN - CNEN/SP, autarquia associada à Universidade de São Paulo. O desenvolvimento do dispositivo faz parte do escopo de obtenção, e levantamento dos dados necessários para o projeto, e a construção do embalado. Esta dissertação versa sobre a concepção mecânica do dispositivo, importante, dividida em duas partes, dimensionamento das barras, que seriam a barra de impacto, a barra de entrada, e a barra de saída, e o dimensionamento do dispositivo de impacto. O dimensionamento das barras envolve conhecimentos do conceito de ondas elásticas em meios sólidos para que o comprimento das barras seja estimado de forma a servir de guia das ondas elásticas, que provocarão a deformação no corpo de prova, e possibilite a boa leitura dessas ondas para análise dos dados. O dispositivo de impacto, este tem que ser robusto o suficiente para produzir a onda de tensão que deforme o corpo de prova, mas não para deformar plasticamente as barras, que terão que continuar durante todo o teste dentro do regime elástico. / This dissertation presents a design of a device to collect characteristic data of materials submitted to the high strain rates, device that takes the name of its idealizer the English engineer Sir Bertram Hopkinson. More specifically, this dissertation is inseparably linked to the development of a package for the transport of radioactive elements as part of the general scope of a CAPES project in partnership with the Materials Science and Technology Center (CCTM), Nuclear and Energy Research Institute IPEN - CNEN / SP, autarchy associated with the University of São Paulo. The development of the device is part of the scope of procurement, and collection of data required for the design, and the construction of the packaging. This dissertation deals with the mechanical design of the device, important, divided into two parts, dimensioning of the bars, which would be the impact bar, the input and output bars and the design of the impact device. The sizing of the bars involves knowledge of the concept of elastic waves in solid media so that the length of the bars is estimated in order to serve as a guide for the elastic waves, which will cause deformation in the test body, and enable a good reading of these waves for analysis of the data. The impact device has to be robust enough to produce the stress wave that deforms the test body but not to deform the bars plastically, which will have to continue throughout the test within the elastic regime.
6

Investigation and Optimization of Connections in Timber Assemblies Subjected to Blast Loading

Viau, Christian 21 April 2020 (has links)
The majority of research on high strain-rate effects in timber structures has been limited to the study of the load-bearing members in isolation. Limited work has been conducted on timber connections and full-scale timber assemblies under blast loading, and these have generally been constrained to qualitative observations. In North America, the increasing prevalence of mid- and high-rise timber structures makes them susceptible to blast effects. In addition, questions remain on how to design and optimize these timber assemblies, including the connections, against blast loads, due in part to the limitations on comprehensive design provisions. The effects of far-field blast explosions were simulated using the University of Ottawa shock tube. A total of fifty-eight dynamic tests were conducted on connection-level and full-scale specimens. The research program aimed to investigate the behaviour of heavy-timber connections when subjected to simulated blast loads. The experimental results showed that connections with a main failure mechanism consisting of wood crushing experienced significant increases in dynamic peak load when compared to the static peak load. In contrast, connections where steel yielding and rupturing occurred experienced no statistically significant increase in dynamic peak load. Full-scale glulam specimens with bolted connections designed to yield via wood crushing and bolt bending performed better than those with overdesigned connections. Bolted connections which failed in splitting led to premature failure of the glulam assembly. Reinforcement with self-tapping screws allowed these bolted joints to fail in a combination of bolt yielding and wood crushing, and provided more ductility when compared to unreinforced specimens. Specially designed energy-absorbing connections significantly increased the energy dissipation capabilities of the timber assemblies. The basis of these connections was to allow for connection yielding while delaying failure of the wood member. This was achieved via elastoplastic connection behaviour, which effectively limited the load imparted onto the wood member. Based on the experimental results, limitations in the current Canadian blast provisions were highlighted and discussed. A two-degree-of-freedom blast analysis software was developed and validated using full-scale and connection-level experimental results and was found to adequately capture the system response with reasonable accuracy. Sensitivity analyses regarding the applicability of using single-degree-of-freedom analysis were presented and discussed.
7

Experimental characterization and constitutive modeling of viscoplastic effects in high strain-rate deformation of polycrystalline FCC metals

Santos, Tiago dos January 2016 (has links)
O presente trabalho tem como objetivo a caracterização experimental e modelagem constitutiva do comportamento de metais CFC (Cúbicos de Face Centrada) policristalinos quando submetidos a altas taxas de deformação. O material empregado no desenvolvimento do trabalho é uma liga de alumínio comercialmente pura: o alumínio AA1050. No âmbito da presente investigação, os experimentos são conduzidos à temperatura ambiente. O desenvolvimento experimental tem por objetivo evidenciar as principais características constitutivas que descrevem o comportamento macroscópico desta classe de metais quando submetidos a processos de deformação envolvendo altas taxas de deformação: (i) o endurecimento induzido pela deformação; (ii) o endurecimento induzido pela taxa de deformação; e (iii) a sensibilidade instantânea em relação à taxa de deformação. Para a caracterização de cada uma destes aspectos constitutivos, são realizados experimentos específicos utilizando equipamentos desenvolvidos, em sua maioria, no contexto da presente investigação. De forma geral, os experimentos consistem em ensaios de compressão envolvendo uma ampla faixa de taxas de deformação, variando desde condições quasi-estáticas a taxas na ordem de 104 s−1. Os resultados experimentais, juntamente com evidências experimentais macro e microscópicas disponíveis na literatura, dão suporte ao desenvolvimento de um modelo constitutivo elasto-viscoplástico. A formulação constitutiva segue uma abordagem semi-física, na qual a escolha das variáveis inelásticas e proposição de suas regras de evolução são qualitativamente guiadas por considerações metalúrgicas baseadas no acúmulo e organização de discordâncias O modelo proposto, embora consista em uma abordagem simplificada quando comparado a modelos de base física, é capaz de representar separadamente cada uma das características constitutivas destacadas anteriormente. Com base nos resultados experimentais aqui obtidos, o modelo elasto-viscoplástico proposto é então ajustado e posteriormente validado. Na sequência é desenvolvida a formulação numérica relacionada ao modelo proposto. A abordagem como um todo é inserida em um contexto de deformações finitas seguindo uma descrição Lagrangiana Total. O desenvolvimento numérico descreve o procedimento utilizado para solução de problemas de equilíbrio não lineares seguindo uma formulação incremental implícita empregando o método dos elementos finitos. Em um contexto local, é utilizado um esquema de integração implícito seguindo um mapeamento exponencial. A linearização das equações de mapeamento de retorno possibilita a derivação analítica do módulo tangente consistente. O modelo constitutivo, bem como o procedimento numérico, são utilizados para a solução de problemas numéricos clássicos como: ensaio de compressão em condições de deformações homogêneas, e compressão envolvendo contato com atrito. As simulações numéricas avaliam tanto a capacidade constitutiva do modelo proposto em descrever o comportamento de estruturas quando deformadas sob condições envolvendo elevadas taxas de deformação, quanto à eficiência do procedimento numérico a partir de análises de convergência Em conclusão, com o procedimento experimental adotado é possível evidenciar as principais características macroscópicas inerentes ao comportamento de metais quando submetidos a processos de deformação envolvendo altas velocidades. Além disso, com base nos resultados analíticos e numéricos, observa-se que o modelo constitutivo proposto é capaz de reproduzir de forma satisfatória os comportamentos evidenciados experimentalmente. / The present work aims at performing the experimental characterization and constitutive modeling associated with the mechanical behavior of polycrystalline FCC (Face Centered Cubic) metals when subjected to high strain-rate deformations. The material to be employed in the experiments is a commercially pure aluminum alloy: aluminum AA1050. Within the present investigation context, experiments are performed at room temperatures. The primary objective of the laboratory experiments is to assess the main constitutive features associated with the macroscopic mechanical behavior observed for FCC metals subjected to high strain-rate deformation processes: (i) strain-hardening; (ii) strain-rate-hardening; and (iii) instantaneous rate-sensitivity. In order to characterize each constitutive feature, experiments using equipments specifically devised to achieve the objectives are performed. The laboratory investigation consists of compression tests involving a wide strain-rate range, from quasi-static conditions to strain-rates of the order of 104 s−1. Experimental results together with micro and macroscopic experimental evidences available in the literature give support to the development of a elastic-viscoplastic model. The stress-strain formulation follows a semi-physical approach, in which inelastic variables and their evolution equations are qualitatively motivated by metallurgical considerations based on the storage and arrangement of dislocations. Although its simplified nature when compared to physically-based models, the proposed model is capable of representing separately each one of the constitutive features highlighted early In addition, in analogy to the stress-strain proposition, a model describing the material hardness evolution in terms of strain and strain-rate histories is also provided. Based on the obtained experimental results, the proposed elastic-viscoplastic and hardness evolution models are adjusted and then validated. The corresponding stress-strain numerical formulation is developed in a subsequent step. The approach as a whole is integrated into finite strain framework following a Total Lagrangian description. The procedure employed to solve nonlinear equilibrium problem follows an implicit incremental formulation implemented in the context of the finite element method. At a local level, an implicit integration scheme based on an exponential mapping is adopted. From linearization of return mapping equations, an analytical consistent tangent modulus is obtained. Both constitutive model and numerical approach are employed to simulated classical problems: a compression test involving homogeneous deformation and a compression test involving contact and frictional conditions. Numerical simulations evaluate the constitutive capabilities associated with the proposed model when predicting the structural behavior at high strain-rate loadings. Furthermore, numerical efficiency and robustness related to the present procedure are also assessed by means of convergence analysis. While the adopted experimental procedure gave fundamental evidences of the main macroscopic features inherent in the metallic material behavior when subjected to high strain-rate deformations, the analytical and numerical results demonstrated that the proposed constitutive model is able to suitably reproduce the observed behavior.
8

Experimental characterization and constitutive modeling of viscoplastic effects in high strain-rate deformation of polycrystalline FCC metals

Santos, Tiago dos January 2016 (has links)
O presente trabalho tem como objetivo a caracterização experimental e modelagem constitutiva do comportamento de metais CFC (Cúbicos de Face Centrada) policristalinos quando submetidos a altas taxas de deformação. O material empregado no desenvolvimento do trabalho é uma liga de alumínio comercialmente pura: o alumínio AA1050. No âmbito da presente investigação, os experimentos são conduzidos à temperatura ambiente. O desenvolvimento experimental tem por objetivo evidenciar as principais características constitutivas que descrevem o comportamento macroscópico desta classe de metais quando submetidos a processos de deformação envolvendo altas taxas de deformação: (i) o endurecimento induzido pela deformação; (ii) o endurecimento induzido pela taxa de deformação; e (iii) a sensibilidade instantânea em relação à taxa de deformação. Para a caracterização de cada uma destes aspectos constitutivos, são realizados experimentos específicos utilizando equipamentos desenvolvidos, em sua maioria, no contexto da presente investigação. De forma geral, os experimentos consistem em ensaios de compressão envolvendo uma ampla faixa de taxas de deformação, variando desde condições quasi-estáticas a taxas na ordem de 104 s−1. Os resultados experimentais, juntamente com evidências experimentais macro e microscópicas disponíveis na literatura, dão suporte ao desenvolvimento de um modelo constitutivo elasto-viscoplástico. A formulação constitutiva segue uma abordagem semi-física, na qual a escolha das variáveis inelásticas e proposição de suas regras de evolução são qualitativamente guiadas por considerações metalúrgicas baseadas no acúmulo e organização de discordâncias O modelo proposto, embora consista em uma abordagem simplificada quando comparado a modelos de base física, é capaz de representar separadamente cada uma das características constitutivas destacadas anteriormente. Com base nos resultados experimentais aqui obtidos, o modelo elasto-viscoplástico proposto é então ajustado e posteriormente validado. Na sequência é desenvolvida a formulação numérica relacionada ao modelo proposto. A abordagem como um todo é inserida em um contexto de deformações finitas seguindo uma descrição Lagrangiana Total. O desenvolvimento numérico descreve o procedimento utilizado para solução de problemas de equilíbrio não lineares seguindo uma formulação incremental implícita empregando o método dos elementos finitos. Em um contexto local, é utilizado um esquema de integração implícito seguindo um mapeamento exponencial. A linearização das equações de mapeamento de retorno possibilita a derivação analítica do módulo tangente consistente. O modelo constitutivo, bem como o procedimento numérico, são utilizados para a solução de problemas numéricos clássicos como: ensaio de compressão em condições de deformações homogêneas, e compressão envolvendo contato com atrito. As simulações numéricas avaliam tanto a capacidade constitutiva do modelo proposto em descrever o comportamento de estruturas quando deformadas sob condições envolvendo elevadas taxas de deformação, quanto à eficiência do procedimento numérico a partir de análises de convergência Em conclusão, com o procedimento experimental adotado é possível evidenciar as principais características macroscópicas inerentes ao comportamento de metais quando submetidos a processos de deformação envolvendo altas velocidades. Além disso, com base nos resultados analíticos e numéricos, observa-se que o modelo constitutivo proposto é capaz de reproduzir de forma satisfatória os comportamentos evidenciados experimentalmente. / The present work aims at performing the experimental characterization and constitutive modeling associated with the mechanical behavior of polycrystalline FCC (Face Centered Cubic) metals when subjected to high strain-rate deformations. The material to be employed in the experiments is a commercially pure aluminum alloy: aluminum AA1050. Within the present investigation context, experiments are performed at room temperatures. The primary objective of the laboratory experiments is to assess the main constitutive features associated with the macroscopic mechanical behavior observed for FCC metals subjected to high strain-rate deformation processes: (i) strain-hardening; (ii) strain-rate-hardening; and (iii) instantaneous rate-sensitivity. In order to characterize each constitutive feature, experiments using equipments specifically devised to achieve the objectives are performed. The laboratory investigation consists of compression tests involving a wide strain-rate range, from quasi-static conditions to strain-rates of the order of 104 s−1. Experimental results together with micro and macroscopic experimental evidences available in the literature give support to the development of a elastic-viscoplastic model. The stress-strain formulation follows a semi-physical approach, in which inelastic variables and their evolution equations are qualitatively motivated by metallurgical considerations based on the storage and arrangement of dislocations. Although its simplified nature when compared to physically-based models, the proposed model is capable of representing separately each one of the constitutive features highlighted early In addition, in analogy to the stress-strain proposition, a model describing the material hardness evolution in terms of strain and strain-rate histories is also provided. Based on the obtained experimental results, the proposed elastic-viscoplastic and hardness evolution models are adjusted and then validated. The corresponding stress-strain numerical formulation is developed in a subsequent step. The approach as a whole is integrated into finite strain framework following a Total Lagrangian description. The procedure employed to solve nonlinear equilibrium problem follows an implicit incremental formulation implemented in the context of the finite element method. At a local level, an implicit integration scheme based on an exponential mapping is adopted. From linearization of return mapping equations, an analytical consistent tangent modulus is obtained. Both constitutive model and numerical approach are employed to simulated classical problems: a compression test involving homogeneous deformation and a compression test involving contact and frictional conditions. Numerical simulations evaluate the constitutive capabilities associated with the proposed model when predicting the structural behavior at high strain-rate loadings. Furthermore, numerical efficiency and robustness related to the present procedure are also assessed by means of convergence analysis. While the adopted experimental procedure gave fundamental evidences of the main macroscopic features inherent in the metallic material behavior when subjected to high strain-rate deformations, the analytical and numerical results demonstrated that the proposed constitutive model is able to suitably reproduce the observed behavior.
9

Experimental characterization and constitutive modeling of viscoplastic effects in high strain-rate deformation of polycrystalline FCC metals

Santos, Tiago dos January 2016 (has links)
O presente trabalho tem como objetivo a caracterização experimental e modelagem constitutiva do comportamento de metais CFC (Cúbicos de Face Centrada) policristalinos quando submetidos a altas taxas de deformação. O material empregado no desenvolvimento do trabalho é uma liga de alumínio comercialmente pura: o alumínio AA1050. No âmbito da presente investigação, os experimentos são conduzidos à temperatura ambiente. O desenvolvimento experimental tem por objetivo evidenciar as principais características constitutivas que descrevem o comportamento macroscópico desta classe de metais quando submetidos a processos de deformação envolvendo altas taxas de deformação: (i) o endurecimento induzido pela deformação; (ii) o endurecimento induzido pela taxa de deformação; e (iii) a sensibilidade instantânea em relação à taxa de deformação. Para a caracterização de cada uma destes aspectos constitutivos, são realizados experimentos específicos utilizando equipamentos desenvolvidos, em sua maioria, no contexto da presente investigação. De forma geral, os experimentos consistem em ensaios de compressão envolvendo uma ampla faixa de taxas de deformação, variando desde condições quasi-estáticas a taxas na ordem de 104 s−1. Os resultados experimentais, juntamente com evidências experimentais macro e microscópicas disponíveis na literatura, dão suporte ao desenvolvimento de um modelo constitutivo elasto-viscoplástico. A formulação constitutiva segue uma abordagem semi-física, na qual a escolha das variáveis inelásticas e proposição de suas regras de evolução são qualitativamente guiadas por considerações metalúrgicas baseadas no acúmulo e organização de discordâncias O modelo proposto, embora consista em uma abordagem simplificada quando comparado a modelos de base física, é capaz de representar separadamente cada uma das características constitutivas destacadas anteriormente. Com base nos resultados experimentais aqui obtidos, o modelo elasto-viscoplástico proposto é então ajustado e posteriormente validado. Na sequência é desenvolvida a formulação numérica relacionada ao modelo proposto. A abordagem como um todo é inserida em um contexto de deformações finitas seguindo uma descrição Lagrangiana Total. O desenvolvimento numérico descreve o procedimento utilizado para solução de problemas de equilíbrio não lineares seguindo uma formulação incremental implícita empregando o método dos elementos finitos. Em um contexto local, é utilizado um esquema de integração implícito seguindo um mapeamento exponencial. A linearização das equações de mapeamento de retorno possibilita a derivação analítica do módulo tangente consistente. O modelo constitutivo, bem como o procedimento numérico, são utilizados para a solução de problemas numéricos clássicos como: ensaio de compressão em condições de deformações homogêneas, e compressão envolvendo contato com atrito. As simulações numéricas avaliam tanto a capacidade constitutiva do modelo proposto em descrever o comportamento de estruturas quando deformadas sob condições envolvendo elevadas taxas de deformação, quanto à eficiência do procedimento numérico a partir de análises de convergência Em conclusão, com o procedimento experimental adotado é possível evidenciar as principais características macroscópicas inerentes ao comportamento de metais quando submetidos a processos de deformação envolvendo altas velocidades. Além disso, com base nos resultados analíticos e numéricos, observa-se que o modelo constitutivo proposto é capaz de reproduzir de forma satisfatória os comportamentos evidenciados experimentalmente. / The present work aims at performing the experimental characterization and constitutive modeling associated with the mechanical behavior of polycrystalline FCC (Face Centered Cubic) metals when subjected to high strain-rate deformations. The material to be employed in the experiments is a commercially pure aluminum alloy: aluminum AA1050. Within the present investigation context, experiments are performed at room temperatures. The primary objective of the laboratory experiments is to assess the main constitutive features associated with the macroscopic mechanical behavior observed for FCC metals subjected to high strain-rate deformation processes: (i) strain-hardening; (ii) strain-rate-hardening; and (iii) instantaneous rate-sensitivity. In order to characterize each constitutive feature, experiments using equipments specifically devised to achieve the objectives are performed. The laboratory investigation consists of compression tests involving a wide strain-rate range, from quasi-static conditions to strain-rates of the order of 104 s−1. Experimental results together with micro and macroscopic experimental evidences available in the literature give support to the development of a elastic-viscoplastic model. The stress-strain formulation follows a semi-physical approach, in which inelastic variables and their evolution equations are qualitatively motivated by metallurgical considerations based on the storage and arrangement of dislocations. Although its simplified nature when compared to physically-based models, the proposed model is capable of representing separately each one of the constitutive features highlighted early In addition, in analogy to the stress-strain proposition, a model describing the material hardness evolution in terms of strain and strain-rate histories is also provided. Based on the obtained experimental results, the proposed elastic-viscoplastic and hardness evolution models are adjusted and then validated. The corresponding stress-strain numerical formulation is developed in a subsequent step. The approach as a whole is integrated into finite strain framework following a Total Lagrangian description. The procedure employed to solve nonlinear equilibrium problem follows an implicit incremental formulation implemented in the context of the finite element method. At a local level, an implicit integration scheme based on an exponential mapping is adopted. From linearization of return mapping equations, an analytical consistent tangent modulus is obtained. Both constitutive model and numerical approach are employed to simulated classical problems: a compression test involving homogeneous deformation and a compression test involving contact and frictional conditions. Numerical simulations evaluate the constitutive capabilities associated with the proposed model when predicting the structural behavior at high strain-rate loadings. Furthermore, numerical efficiency and robustness related to the present procedure are also assessed by means of convergence analysis. While the adopted experimental procedure gave fundamental evidences of the main macroscopic features inherent in the metallic material behavior when subjected to high strain-rate deformations, the analytical and numerical results demonstrated that the proposed constitutive model is able to suitably reproduce the observed behavior.
10

Investigating the Response of Light-Frame Wood Stud Walls with and Without Boundary Connections to Blast Loads

Viau, Christian January 2016 (has links)
Most of the research on high strain rate effects on wood since the 1950s has been on impact loading. Very limited work has been conducted on full-scale wood specimens under blast loading. In North America, the prevalence of these structures makes them susceptible to unintended blast effects. The question on how to retrofit and protect these structures against blast loads has still not been addressed adequately, and design provisions for new wood structures against blast are not comprehensive. Far-field explosion effects were simulated using the University of Ottawa shock tube. Twenty-five light-frame wood stud walls were tested dynamically. The research program aimed to determine the response of light-frame wood stud walls to blast loads that correspond to the heavy to blow-out damage levels. The results showed that, under idealized simply supported end conditions, the stud walls failed in flexure. Under heavier loads, ripping of sheathing commonly used in light-frame wood structures was observed, which caused premature failure of the assembly because the load was not fully distributed to the studs. The use of stiffer sheathing or reinforcing the sheathing provided a better load path and the wall was capable of reaching its full capacity. The effect of using realistic boundary connection details was investigated, and the results showed that typical connection detailing performed poorly under blast loads. Designed steel brackets connecting the studs to the rim-joist allowed for the studs to reach their full capacity. An analytical single degree-of-freedom model was generated using material properties obtained from static testing. The model was validated using the experimental results from the shock tube testing. Also, a catcher system consisting of welded-wire-mesh was incorporated into the wall system in order to diminish debris throw.

Page generated in 0.0618 seconds