• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 68
  • 57
  • 7
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 173
  • 173
  • 173
  • 58
  • 53
  • 44
  • 33
  • 30
  • 24
  • 22
  • 18
  • 18
  • 17
  • 17
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Laboratory testing protocols to represent thermo-mechanical signatures of high strength concretes in medium to mass sized placements

Carey, Ashley Suzanne 30 April 2021 (has links)
Structural elements comprised of high strength concrete (HSCs) have gained popularity due to their high compressive strength, increased tensile strength, and low permeability that can be achieved with smaller placements relative to what would be needed with traditional ready mixed concretes. HSCs are also gaining interest for mass placements that are very large. Determining in-place properties of any of these structures is critical to the overall success of a project and elusive to determine prior to placement. In this dissertation, a laboratory based thermo-mechanical framework is outlined to predict in-place properties of modest to mass sized HSC structures using mostly existing and common laboratory testing methods with a few additional items on the same scale as existing equipment. Various curing protocols were evaluated in this study to determine a recommended set of protocols to reproduce thermal profiles of modest and mass sized structures on laboratory scale specimens. These specimens can then be tested following standard testing protocols to reasonably estimate in-place mechanical properties. This framework is envisioned to be a foundational piece of a standard test method in the future. Approximately 600 concrete specimens were tested for compressive strength, 300 specimens for elastic modulus, 100 for splitting tensile strength as well as 100 cement paste specimens for compressive strength. Additionally, approximately 400 time-temperature curves were recorded for both cement paste and HSC specimens.
52

Residual strength of a high-strength concrete subjected to triaxial pre-stress

Vankirk, George Harlan 25 November 2020 (has links)
Simplified mechanical loading paths, which represent more complex loading paths observed during penetration, were investigated using a triaxial chamber and a high-strength concrete. Objectives were to determine the effects that stress/strain (load) paths had on the material’s unconfined (UC) residual strength. The loading paths included hydrostatic compression (HC), uniaxial strain in compression (UX), and uniaxial strain load biaxial strain unload (UXBX). The experiments indicate that load paths associated with non-visible microstructural damage were HC and UX, which produced minimal impact on the residual UC strength (<30%), while the load paths associated with visible macro-structural damage were UXBX, which significantly reduced the UC strength (>90%). The simplified loading paths were also investigated using a material model driver code that was fit to a widely used Department of Defense material model. Virtual experiment data revealed that the material model investigated overestimated material damage and produced poor results when compared to experimental data.
53

Internal curing of high-performance concrete for bridge decks

Deboodt, Tyler 09 December 2011 (has links)
High performance concrete (HPC) provides a long lasting, durable concrete that is typically used in bridge decks due to its low permeability, high abrasion resistance, freeze-thaw resistance and strength. However, this type of concrete is highly susceptible to the deleterious effects of both autogenous and drying shrinkage. Both types of shrinkage occur when water leaves small pores , (< 50 nm) in the paste matrix to aid in hydration or is lost to the surrounding environment. Autogenous deformation (self-desiccation) occurs as the internal relative humidity decreases due to hydration of the cementitious material. Drying (and subsequent shrinkage) occurs when water is lost to the environment and continues until the internal relative humidity is equivalent to the ambient relative humidity. Typically, the magnitude of autogenous shrinkage is less than that of drying shrinkage. These two types of shrinkage do not act independently, and the total shrinkage is the aggregation of the two shrinkage mechanisms. It is imperative to minimize the amount of shrinkage in restrained members, such as bridge decks, to reduce the cracking potential. Various methods have been researched to minimize both types of shrinkage. Two methods to that have been reported to reduce shrinkage were selected for further research; internal curing using pre-soaked lightweight fine aggregate (LWFA) and shrinkage reducing admixtures (SRAs). The purpose of this study was to determine the long-term drying shrinkage performance of these two methods while reducing the external curing duration of 14 days for new bridge deck construction as specified by the Oregon Department of Transportation. In addition to monitoring drying shrinkage, durability testing was performed on concrete specimens to ensure these shrinkage mitigation methods performed at levels similar to concrete with the current mixture design. Freeze-thaw testing, permeability testing and restrained drying shrinkage testing were conducted. It was concluded that the combination of SRAs and pre-soaked LWFA was the most effective method to reduce longterm drying shrinkage for all curing durations (1, 7, and 14 day). Additionally, for durability testing, it was found that the use of SRAs performed the best in freeze-thaw testing, chloride permeability and restrained shrinkage. / Graduation date: 2012
54

Effects of confinement and small axial load on flexural ductility of high-strength reinforced concrete beams

Chau, Siu-lee., 周小梨. January 2005 (has links)
published_or_final_version / abstract / Civil Engineering / Master / Master of Philosophy
55

[en] BEHAVIOR OF SLENDER HIGH STRENGTH CONCRETE COLUMNS UNDER UNIAXIAL AND BIAXIAL ECCENTRIC LOADS / [pt] COMPORTAMENTO DE PILARES ESBELTOS DE CONCRETO DE ALTA RESISTÊNCIA SOB FLEXÃO COMPOSTA RETA E OBLÍQUA

BETZABET EVELIN VILAVILA NORIEGA 18 April 2011 (has links)
[pt] Trata-se de um estudo experimental do comportamento de pilares de alta resistência submetidos à flexão composta reta e oblíqua. Foram ensaiados oito pilares com seção transversal de 25x15 cm e comprimento de 300 cm, compondo duas séries de 4 pilares cada uma. Na primeira série, a resistência do concreto foi de 40 MPa e os quatro pilares foram ensaiados à flexão composta oblíqua. Na segunda série, a resistência do concreto foi de 70 MPa e os quatro pilares foram ensaiados à flexão composta reta. Em cada série, a variável foi a taxa de armadura longitudinal que assumiu os valores 1,3%, 2,1%, 3,2% e 4,3%. A finalidade foi verificar os valores da excentricidade de segunda ordem que devem ser considerados no dimensionamento de pilares de concreto de alta resistência. Os resultados experimentais foram comparados com os obtidos pelos métodos do Pilar Padrão com Curvatura Aproximada e do Pilar Padrão com Rigidez Aproximada que constam na NBR 6118:2003. Essa comparação mostrou que o método da curvatura aproximada apresenta valores das excentricidades de 2ª ordem próximos dos reais no caso de pilares submetidos à flexão composta reta e oblíqua, enquanto que o método da rigidez aproximada é contra a segurança só na maioria dos ensaios de pilares submetidos à flexão composta reta. / [en] This work presents an experimental study of the behavior of slender high strength concrete columns under uniaxial and biaxial eccentric compression loads. Eight columns with cross-section of 15x25 cm and height of 300 cm were tested, divided into two series. In the first series, the concrete strength was 40 MPa and the four columns were tested under biaxial compression. In the second series, the concrete strength was 70 MPa and the four columns were tested under uniaxial compression. In each series, the variable was the longitudinal reinforcement ratio which assumed the values 1,3%, 2,1%, 3,2% e 4,3%. The objective was to verify the values of the eccentricity of second order that should be taken into account in the design of slender high strength concrete columns. The experimental results were compared with theoretical results obtained by the models of the approximated curvature and approximated stiffnes methods prescribed in the NBR 6118:2003 code. This comparison showed that the method of curvature approximate present values of the eccentricities of second order close to the real in the case of columns under uniaxial and biaxial eccentric compression loads, while the method of stiffness approximate is lower security in columns under uniaxial eccentric compression load.
56

Durability prediction of recycled aggregate concrete under accelerated aging and environmental exposure

Unknown Date (has links)
This study is to compare the performance of recycled aggregate concrete and the impact of up to 50% cement replacement with fly ash on durability. Water content, sieve analysis, standard and modified compaction tests were performed to assess the physical properties of the recycled aggregate concrete. Accelerated aging tests were performed to predict the long term durability of the recycled aggregate concrete. Following Arrhenius modeling and TTS and SIM accelerated aging protocols, a time versus stiffness master curve was created. This allowed the prediction of equivalent age using experimental data and theoretical analysis. To account for environmental exposure, the specimens underwent 24 and 48 hours of wet-dry cycling and subjected. Overall there was an increase in stiffness and strength from the specimens containing fly ash. All tests performed predicted equivalent age beyond the testing period of 144 hrs. and up to 7 years. Specimens containing fly maintained a constant and higher density to environmental exposure. / by Lillian Gonzalez. / Thesis (M.S.C.S.)--Florida Atlantic University, 2010. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2010. Mode of access: World Wide Web.
57

Fire performance of high strength concrete materials and structural concrete

Unknown Date (has links)
In recent years, high strength concrete (HSC) is becoming an attractive alternative to traditional normal strength concrete (NSC), and is used in a wide range of applications. With the increased use of HSC, concern has developed regarding the behavior of such concrete in fire. Until now, the fire performance of HSC is not fully understood and more research is needed. Full-scale fire testing is time consuming and expensive, and the real fire scenario is different from the standard fire. Performance-based assessment methods, including numerical analysis and simplified method, are being accepted in an increasing number of countries. In this dissertation, the fire testing results both of HSC and NSC are presented, performance-based numerical models are developed to study the fire performance of reinforced concrete (RC) members, and simplified calculation methods are proposed to estimate the load capacity of fire-damaged RC columns/beams. A detailed and comprehensive literature review is presented that provides background information on the high temperature behavior of concrete materials and RC members, as well as information on fire performance assessment procedures and objectives. The fire testing results of seven batches of HSC and NSC are presented and discussed. The test results indicated that the post-fire re-curing results in substantial strength and durability recovery, and its extent depends upon the types of concrete, temperature level, and re-curing age. The fire tests also showed that violent explosive reduced the risk of HSC explosive spalling. The surface crack widths were also reduced during the re-curing process, and in most cases, they were found within the maximum limits specified by the American Concrete Institute (ACI) building code. / Numerical models are developed herein to investigate the behavior in fire of RC columns and beams. The models have been validated against fire test data available in literature, and used to conduct parametric studies, which focused on the size effect on fire resistance of RC columns, and the effect of concrete cover thickness on fire endurance of RC beams. Simplified calculation methods have been developed to predict the load capacity of fire damaged RC columns/beams. This method is validated by five case studies, including thirty-five RC columns tested by other investigators. The predicted results are compared with the experimental results, and the good agreement indicates the adequacy of the simplified method for practical engineering applications. / by Lixian Liu. / Thesis (Ph.D.)--Florida Atlantic University, 2009. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2009. Mode of access: World Wide Web.
58

Análise teórico-experimental de consolos de concreto armado / Theoretic-experimental analysis of reinforced concrete corbels

Torres, Fernando Montenegro 21 September 1998 (has links)
Este trabalho tem o objetivo de analisar teórica e experimentalmente o comportamento de consolos de concreto armado. Para tal, foi realizada uma revisão bibliográfica, buscando os artigos mais recentes e as principais normas que tratam deste assunto. Foram analisados mais de trezentos consolos encontrados na literatura. Nesta análise, as forças de ruína experimentais foram comparadas com a forças de ruínas calculadas segundo as normas: ACI-318M-89, CAN3-A23.3-M-84 e NBR-9062/85. Para complementar este estudo, foram ensaiados oito consolos de concreto de alta resistência, os quais apresentavam: as mesmas dimensões, a mesma armadura principal e diferentes taxas de armadura de costura. A resistência do concreto variou de 50 MPa a 80 MPa. Estes consolos tiveram suas forças de ruína comparadas com as previstas pelas normas já citadas. Além disto, foram analisadas: as deformações na armadura, medidas a cada nível de carregamento, e o ângulo de inclinação das tensões principais, medidos no centro geométrico da provável biela comprimida. De acordo com as análises realizadas, pode-se observar que o uso de concreto de alto desempenho na confecção de consolos é bastante eficaz. Entretanto, é necessário o uso de taxas adequadas de armadura, que são basicamente as mesmas indicadas para consolos de concreto de resistência convencional. O dimensionamento de consolos segundo as normas citadas foi bastante satisfatório. Entretanto, no cálculo da força de ruína das peças ensaiadas por outros pesquisadores, os resultados não foram tão satisfatórios, pois estes consolos analisados nem sempre apresentavam o detalhamento conforme recomendam estas normas. / The aim of this work is to analyze theoretically and experimentally the behavior of reinforced concrete corbels. A bibliographic review was done, searching for the most recent papers and the main codes concerning to this subject. It was analyzed more than there hundred corbels found in the literature. In this analysis, the experimental failures forces were compared to the failure forces calculated by the followings codes: ACI-318M-89; CAN3-A23.3-M-84 and NBR-9062/85. To complement this work, eight corbels of high-strength concrete were made with the same dimensions, the same main reinforcement and different rates of secondary reinforcement. The strength of the concrete ranged from 50 MPa to 80 MPa. These corbels had their failure forces compared with the failure forces postulated by the codes. It was also evaluated the deformations of the reinforcement, considered in each level of loading, and the angle of inclination of the main stresses, measured in the geometric center of probable compressed diagonal. By this analysis, it was observed that the use of high-strength concrete in the construction of corbels is quitely efficient. Although, it is necessary the use of proper reinforcement ratios, that are basically the same indicated for corbels with low-strength concrete. The design of corbels by the cited codes was quitely satisfactory. By the way, the calculation of the failure force of corbels made by others researchers were not satisfactory. The probable reason was that the corbels did not present the reinforcement details recomended by these codes.
59

Strength and ductility of fibre reinforced high strength concrete columns

Zaina, Mazen Said, Civil & Environmental Engineering, Faculty of Engineering, UNSW January 2005 (has links)
The main structural objectives in column design are strength and ductility. For higher strength concretes these design objectives are offset by generally poor concrete ductility and early spalling of the concrete cover. When fibres are added to the concrete the post peak characteristics are enhanced, both in tension and in compression. Most of the available experimental data, on fibre reinforced concrete and fibre reinforced high strength concrete columns, suggest that an improvement in both ductility and load carrying capacity due to the inclusion of the fibres. In this thesis the ductility and strength of fibre reinforced high strength concrete are investigated to evaluate the effect of the different parameters on the performance of columns. The investigation includes both experimental and the numerical approaches with 56 high strength fibre reinforced concrete columns being tested. The concrete strength ranged between 80 and 100 MPa and the columns were reinforced with 1, 2 or 2.6 percent, by weight, of end hooked steel fibres. The effect of corrugated Polypropylene fibres on the column performance was also examined. No early spalling of the cover was observed in any of the steel fibre reinforced column tested in this study. A numerical model was developed for analysis of fibre and non-fibre reinforced eccentrically loaded columns. The column is modelled as finite layers of reinforced concrete. Two types of layers are used, one to represent the hinged zone and the second the unloading portion of the column. As the concrete in the hinged layers goes beyond the peak for the stress verus strain in the concrete the section will continue to deform leading to a localised region within a column. The numerical model is compared with the test data and generally shows good correlation. Using the developed model, the parameters that affect ductility in fibre-reinforced high strength concrete columns are investigated and evaluated. A design model relating column ductility with confining pressure is proposed that includes the effects of the longitudinal reinforcement ratio, the loading eccentricity and the fibre properties and content and design recommendations are given.
60

Analysis of current methods of flexural design for high strength concrete beams

Tabassum, Javeria, javeriaajaz@yahoo.co.in January 2008 (has links)
Considerable amount of research was carried out into the properties and structural performance of high strength concrete for more than few decades. Whilst this research has produced relevant and useful results, there are several properties of high strength concrete like compressive and tensile strengths, stiffness, durability etc. that need to be evaluated and investigated to determine an accurate representation for the determination of different structural properties of beams made of high strength concrete. For this purpose, an investigation into the behaviour of beams made of higher concrete strengths has been carried out and conclusions drawn for the design of high strength concrete beams in flexure. Experimental data from previous research was considered for the study to establish some understanding of flexural behavior of HSC beams. A number of spreadsheets in Excel were developed using available data and various graphs were plotted to determine the accuracy of the code provisions for calculating the ultimate moment capacity of beams. A study on flexural ductility of beams has been carried out using a computer program FRMPHI which generates moment-curvature curves for the beams. Ductility has been studied using ductility factors. The influence of ductility on the value of the depth of neutral axis has been analysed and discussed. A chapter on the short-term deflection of simply supported high strength concrete beams under instantaneous deflections is presented. This chapter includes analysis of the available formula to calculate deflection to determine if these can be adopted for high strength concrete. Extensive ongoing research on the shear strength of beams by several researchers since many years has lead to the generation of a large body of knowledge. Although each author has analysed the data comparing them with existing relationships, the whole body of information has not been analysed to establish a statistical significance. In this study, regression analysis on experimental data collected from published research is carried a relationship between the different parameters affecting the shear strength of beams. The level of significance of the association between parameters influencing shear strength is also discussed.

Page generated in 0.0933 seconds