• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Biosenseurs reposant sur l'AMPK et le FRET pour l'analyse du métabolisme énergétique : AMPFret / AMPK- and FRET- based biosensors for energy metabolism : AMPfret

Pelosse, Martin 19 June 2015 (has links)
La protéine kinase activée par AMP (AMPK) est un senseur ubiquitaire du statut énergétique de la cellule eucaryote. Elle est exprimée sous la forme d'un complexe hétérotrimèrique comprenant les sous unités catalytique (α) et régulatrices (β et γ). Ce large complexe protéique (130kDa), fonctionne comme un hub central de la signalisation cellulaire, régulateur du métabolisme énergétique et au-delà. La (dé)régulation de l'AMPK est impliquée dans de nombreuses pathologies et l'AMPK apparait comme une cible de choix pour développer de nouveaux médicaments contre le diabète de type 2. Une fois activée, l'AMPK va restaurer l'homéostasie énergétique en diminuant le métabolisme demandeur d'énergie (anabolisme) et en stimulant le métabolisme produisant le l'énergie (catabolisme). In vivo, l'AMPK est activée par des mécanismes multiples et complexes permettant la fine régulation de son activité lors de différentes situations de stress métaboliques. Premièrement, l'activité de l'AMPK est modulée de manière systémique par phosphorylation et déphosphorylation de la sous unité α (par des kinases et phosphatases en amont respectivement). De plus, l'attachement d'AMP et d'ADP à la sous unité γ augmente la phosphorylation de l'AMPK. Deuxièmement, l'AMPK est activée de manière allostérique par l'AMP qui se lie à sous unité γ lors de chutes du ratio ATP/AMP. Tous ces mécanismes requièrent une communication entre les sous unités α et γ, mais un modèle consensus complet de l'activation de l'AMPK est toujours manquant. Se basant sur différentes études structurales, d'autres et nous-mêmes avons proposé un changement de conformation induit par AMP au sein de l'hétérotrimère AMPK. Afin de mieux élucider ce mécanisme, nous avons tiré profit de ces changements conformationels pour imaginer et créer un hétérotrimère d'AMPK permettant de suivre directement et en temps réel l'état de conformation de l'AMPK par FRET. Une limite importante lors du développement de complexes multiprotéiques est l'augmentation exponentielle de la quantité de travail liée à la modification et la combinaison de nombreux gènes hétérologues lors du remaniement de ces complexes protéiques et de leurs productions. Nous avons utilisé la technologie ACEMBL, qui exploite des techniques de recombinaisons homologues, pour faciliter la révision rapide et itérative de la production et de l'analyse fonctionnelle, après ingénierie, de complexes multi protéiques. Le senseur fluorescent génétiquement codé ainsi crée, et nommé AMPfret, a la propriété de rapporter les changements de conformation induits par les nucléotides ayant lieu au sein de l'AMPK. De plus, les changements de signal FRET corrèlent avec l'activation allostérique de l'AMPK. Le senseur répond à de faible concentrations en AMP (micromolaire) et a démontré la capacité exclusive qu'a l'ATP, et non l'ATP-Mg, à concurrencer l'AMP. De plus, son utilisation a permis une meilleure compréhension du rôle des sites CBS lors de l'activation allostérique. AMPfret peut aussi être considérer comme un outil de choix pour le criblage de molécules ciblant l'AMPK, et pour le monitoring de l'état énergétique intracellulaire. / AMP-activated protein kinase (AMPK) is a ubiquitous sensor of cellular energy and nutrient status in eukaryotic cells. It is expressed as heterotrimeric complexes comprising catalytic (α) and regulatory (β and γ) subunits. This large protein complex (130kDa), conserved from yeast to plants and mammals, functions as a central signaling hub and master regulator of energy metabolism and beyond. (Dys)regulation of AMPK signaling has been implicated in various pathologies. In particular, AMPK emerged as a suitable target to develop novel drugs for type II diabetes. Once activated AMPK will attempt to restore the energy homeostasis by down-regulating energy demanding pathways (anabolism) and up-regulating the energy producing ones (catabolism). AMPK is activated in vivo by multiple, complex mechanisms allowing fine tuning of AMPK activity in different situations of metabolic stress. First, AMPK activity is systemically modulated via activating phosphorylation at the α-subunit (by upstream kinases) and inactivating dephosphorylation (by upstream phosphatases). In addition, AMP and ADP binding to the γ-subunit increase AMPK phosphorylation. Second, AMPK is allosterically activated by AMP binding to the γ-subunit when the ATP/AMP ratio is falling. All these mechanisms require close communication between the γ- and α subunits, but a complete consensus model for AMPK activation is still lacking. We and others have proposed an AMP-induced conformational switch within the full-length heterotrimeric AMPK complex based on different, complementary structural studies. To further elucidate this mechanism, we have profited from these structural rearrangements to imagine and engineer an AMPK complex that allows a direct, real-time readout of the AMPK conformational state by fluorescence resonance energy transfer (FRET). A definite bottleneck in engineering multiprotein complexes is the exponential increase in work-load if several heterologous genes need to be altered, engineered and combined for revised protein complex production experiments. We used the ACEMBL technology which harnesses site-specific and homologous recombination techniques in tandem to facilitate rapid, iterative revision of multi-protein complex expressions after engineering and functional analysis of multiprotein complex. The resulting genetically encoded fluorescent biosensor, named AMPfret, can report conformational changes within the AMPK heterotrimer induced by nucleotide binding and the monitored FRET correlates with AMPK allosteric activation. The sensor responds to low micromolar concentrations of AMP, shows the exclusive ability of ATP, but not Mg-ATP, to compete with AMP, and allows insight into the role of CBS domains for allosteric AMPK activation. It may also be a tool of choice for AMPK targeted drug screening, and reporting the intracellular energy state.

Page generated in 0.142 seconds