• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • 2
  • Tagged with
  • 7
  • 7
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Study of Direct Measuring Skin Friction Gages for High Enthalpy Flow Applications

Meritt, Ryan James 11 June 2010 (has links)
This study concerns the design, analysis, and initial testing of a novel skin friction gage for applications in three-dimensional, high-speed, high-enthalpy flows. Design conditions required favorable gage performance in the Arc-Heated Facilities at Arnold Engineering Development Center. Flow conditions are expected to be at Mach 3.4, with convective heat properties of h= 1,500 W/(m°·K) (264 Btu/(hr·ft°·°R)) and T_aw= 3,900 K (7,000 °R). The wall shear stress is expected to be as high as τ_w= 2,750 Pa (0.40 psi) with a correlating coefficient of skin friction value around C_f= 0.0035. Through finite element model and analytical analyses, a generic gage design is predicted to remain fully functional and within reasonable factors of safety for short duration tests. The deflection of the sensing head does not exceed 0.025 mm (0.0001 in). Surfaces exposed to the flow reach a maximum temperatures of 960 K (1,720 °R) and the region near the sensitive electronic components experience a negligible rise in temperature after a one second test run. The gage is a direct-measuring, non-nulling design in a cantilever beam arrangement. The sensing head is flush with the surrounding surface of the wall and is separated by a small gap, approximately 0.127 mm (0.005 in). A dual-axis, semi-conductor strain gage unit measures the strain in the beam resulting from the shear stress experienced by the head due to the flow. The gage design incorporates a unique bellows system as a shroud to contain the oil filling and protect the strain gages. Oil filling provides dynamic and thermal damping while eliminating uniform pressure loading. An active water-cooling system is routed externally around the housing in order to control the temperature of the gage system and electronic components. Each gage is wired in a full-bridge Wheatstone configuration and is calibrated for temperature compensation to minimize temperature effects. Design verification was conducted in the Virginia Tech Hypersonic Tunnel. The gage was tested in well-documented Mach 3.0, cold and hot flow environments. The tunnel provided stagnation temperatures and pressures of up to T₀= 655 K (1,180 °R) and P₀= 1,020 kPa (148 psi) respectively. The local wall temperatures ranged from T_w= 292 to 320 K (525 to 576 °R). The skin friction coefficient measurements were between 0.00118 and 0.00134 with an uncertainty of less than 5%. Results were shown to be repeatable and in good concurrence with analytical predictions. The design concept of the gage proved to be very sound in heated, supersonic flow. When it worked, it did so very effectively. Unfortunately, the implementation of the concept is still not robust enough for routine use. The strain gage units in general were often unstable and proved to be insufficiently reliable. The detailed gage design as built was subject to many potential sources of assembly misalignment and machining tolerances, and was susceptible to pre-loading. Further recommendations are provided for a better implementation of this design concept to make a fully functional gage test ready for Arnold Engineering Development Center. / Master of Science
2

Numerical Investigation of Hypersonic Conical Boundary-Layer Stability Including High-Enthalpy and Three-Dimensional Effects

Salemi, Leonardo da Costa, Salemi, Leonardo da Costa January 2016 (has links)
The spatial stability of hypersonic conical boundary layers is investigated utilizing different numerical techniques. First, the development and verification of a Linearized Compressible Navier-Stokes solver (LinCS) is presented, followed by an investigation of different effects that affect the stability of the flow in free-flight/ground tests, such as: high-enthalpy effects, wall-temperature ratio, and three-dimensionality (i.e. angle-of-attack). A temporally/spatially high-order of accuracy parallelized Linearized Compressible Navier-Stokes solver in disturbance formulation was developed, verified and employed in stability investigations. Herein, the solver was applied and verified against LST, PSE and DNS, for different hypersonic boundary-layer flows over several geometries (e.g. flat plate - M=5.35 & 10; straight cone - M=5.32, 6 & 7.95; flared cone - M=6; straight cone at AoA = 6 deg - M=6). The stability of a high-enthalpy flow was investigated utilizing LST, LinCS and DNS of the experiments performed for a 5 deg sharp cone in the T5 tunnel at Caltech. The results from axisymmetric and 3D wave-packet investigations in the linear, weakly, and strongly nonlinear regimes using DNS are presented. High-order spectral analysis was employed in order to elucidate the presence of nonlinear couplings, and the fundamental breakdown of second mode waves was investigated using parametric studies. The three-dimensionality of the flow over the Purdue 7 deg sharp cone at M=6 and AoA =6 deg was also investigated. The development of the crossflow instability was investigated utilizing suction/blowing at the wall in the LinCS/DNS framework. Results show good agreement with previous computational investigations, and that the proper basic flow computation/formation of the vortices is very sensitive to grid resolution.
3

Cross-Flow, Staggered-Tube Heat Exchanger Analysis for High Enthalpy Flows

Hammock, Gary L 01 May 2011 (has links)
Cross flow heat exchangers are a fairly common apparatus employed throughout many industrial processes. For these types of systems, correlations have been extensively developed. However, there have been no correlations done for very high enthalpy flows as produced by Arnold Engineering Development Center’s (AEDC) H2 facility. The H2 facility uses a direct current electric arc to heat air which is then expanded through a converging-diverging nozzle to impart a supersonic velocity to the air. This high enthalpy, high temperature air must be cooled downstream by the use of a cross flow heat exchanger. It is of interest to evaluate the actual performance of the air cooler to determine the effectiveness of possible facility upgrades. In order to characterize cooler effectiveness, a numerical model is built to calculate per-tube-row energy balances using real (temperature and pressure dependent) air and water properties and cross-flow Nusselt number calculations.
4

Réservoirs hydro-géothermaux haute enthalpie : apport des propriétés pétrophysiques des basaltes / High enthalpy hydro-geothermal reservoirs : insights from basalt petrophysical properties

Violay, Marie 03 December 2010 (has links)
La géothermie est considérée comme une source d'énergie propre et inépuisable à échelle humaine. Actuellement, le rendement des centrales géothermiques est limité à l'exploitation de fluides de températures inférieures à 300°C. L'association de l'activité tectonique et volcanique aux dorsales océaniques fait de l'Islande un lieu où l'extraction de fluides supercritiques (T°>400°C) peut être envisagée. Cette exploitation pourrait multiplier par dix la puissance électrique délivrée par les puits géothermiques. Ces fluides peuvent-ils circuler dans la croûte océanique ? Ce travail propose de contraindre les observations géophysiques et de prédire le fonctionnement des réservoirs hydro-géothermaux de très haute température par l'étude des propriétés physiques des basaltes. La première approche est focalisée sur l'étude de roches ayant accueilli une circulation hydrothermale par le passé. L'étude de ces roches au site ODP 1256, montre que leur porosité est associée à la présence de minéraux d'altération hydrothermale du faciès amphibolite (T°>500°C ). La seconde approche a consisté à recréer en laboratoire les conditions des systèmes hydrothermaux à très haute température afin de prédire les propriétés mécaniques et électriques des basaltes dans ces conditions. Les résultats mécaniques indiquent que la transition fragile/ductile, souvent associée à une forte décroissance de perméabilité, intervient à une température d'environ 550°C. La mise en place d'une cellule de mesure de la conductivité électrique de haute températures a fournit les premiers résultats utiles à l'analyse des données géophysiques. Appliqués aux conditions de la croûte basaltique Islandaise, ces résultats indiquent que des fluides hydrothermaux pourraient circuler au moins transitoirement à l'état supercritique jusqu'à ~ 5 km de profondeur. / Geothermal energy is considered as a green and infinite energy source at human scale. Currently, the yield of geothermal power plants is limited to temperatures of the operating fluid which 300 °C. From tectonic and volcanic activity at mid-ocean ridges, Iceland is a locuswhere supercritical fluid extraction (T > 400° C) can considered for the near future. Exploiting such fluids could theoretically multiply by a factor of ten the electrical power delivered by geothermal wells. Can such fluids circulate at the base of brittle oceanic crust? This work investigates the petrophysical properties of basalts in order to constrain geophysical observations in Iceland and predict the behavior of very high temperature hydro-geothermal reservoirs. The first approach consisted in studying the physical properties of rocks that have hosted deep hydrothermal circulations at oceanic ridges. The study of these rocks at ODP Site 1256 shows that the porosity mea sured both in the field and in the lab is associated with amphibolite facies alteration minerals (T > 500° C). The second approach was to recreate in the laboratory the conditions of pressure, temperature and pore fluid pressure of high temperature to supercritical hydrothermal systems to predict the mechanical and electrical properties of basalts under these conditions. The mechanical results indicate that the brittle/ductile transition occurs at a temperature of about 550° C, where a strong permeability decrease is expected. The implementation and calibration of a new cell for measuring electrical conductivity at high temperature provide the first results for the interpretation of geophysical data. When applied to basaltic crustal conditions in Iceland, these results indicate that hydrothermal fluids could circulate, at least temporarily, in a supercritical state up to 5 km depth.
5

Transferts de pression, de masse et d'énergie au sein des systèmes aquifères grandes profondeurs : application à la géothermie haute énergie / Flow, mass and heat transfers in deep aquifer systems : Application to high geothermal energy

Le Lous, Morgan 23 February 2017 (has links)
Utilisée depuis des milliers d’années sous ses manifestations naturelles par l’Homme, cette ressource fait l’objet d’une exploitation commerciale depuis seulement le XXe siècle, à destination du chauffage de bâtiments, de certains usages industriels ainsi que de la production d’électricité. La France compte parmi les pionniers concernant l’usage direct de la chaleur alors qu’aucune filière industrielle n’est véritablement effective pour la production d’électricité d’origine géothermique. Le projet sélectionné, intitulé FONGEOSEC, a pour objectif la conception et la réalisation d’un démonstrateur innovant préindustriel d’une centrale géothermique haute enthalpie exploité par cogénération d’électricité et de chaleur. Un travail de recherche et développement, conduit par un consortium composé de partenaires industriels et scientifiques, vise au lancement de la filière industrielle géothermique haute température en France. L’objectif général des travaux de thèse porte sur une meilleure compréhension globale des comportements hydrauliques, massiques et thermiques des formations profondes en réponse à une sollicitation anthropique de longue durée. Il s’agit d’identifier les paramètres clés régissant la réponse du complexe réservoir à la suite d’une exploitation géothermique. Un point particulier sera consacré à caractériser la part de chacun des modes de transport de chaleur en milieu poreux – conduction thermique, convection libre et forcée – dans l’établissement des performances thermiques de l’ouvrage considéré. Plusieurs dispositifs techniques d’exploitation seront proposés afin de réduire les incertitudes associées au système géothermique souterrain et garantir le succès du projet FONGEOSEC. L’impact des mécanismes thermo-convectifs au voisinage des forages d’exploitation géothermique de grande profondeur reste peu documenté, a fortiori dans le cas de dispositifs déviés adoptant une complétion particulière. L’outil retenu pour l’évaluation des performances du dispositif au contact de l’encaissant est la modélisation numérique distribuée. La variabilité des propriétés physiques de l’hydrosystème, de la conception et des modalités d’exploitation du dispositif sur le comportement hydraulique et thermique de l’exploitation est envisagée selon différentes approches développées à partir de modèles numériques 3D. / Used for thousands of years under its natural manifestations, this resource has been commercially exploited since the twentieth century, for the heating of buildings, certain industrial uses and the production of electricity. France is one of the pioneers in the direct use of heat, whereas no industrial cluster is truly effective for the production of geothermal electricity. The selected project, FONGEOSEC, aims to design and produce an innovative pre-industrial demonstrator of a high enthalpy geothermal power plant operated by cogeneration of electricity and heat. A research and development project, led by a consortium of industrial and scientific partners, aims to launch the high-temperature geothermal industrial sector in France. The general objective of this thesis is to improve the understanding of the hydraulic, mass and thermal behavior of deep porous formations in response to long-term anthropogenic stress. The aim is to identify the key parameters governing the response of the reservoir complex related to geothermal operation. A particular point will be devoted to characterize the part of each mode of transport of heat in porous medium – thermal conduction, free and forced convection – in the establishment of the thermal performances of the geothermal power plant. Several technical operating devices will be proposed to reduce the uncertainties associated with the underground geothermal system and guarantee the success of the FONGEOSEC project. The impact of thermo-convective mechanisms in the vicinity of deep geothermal borehole remains poorly documented, especially in the case of deviated wells with a complex inner geometry. The evaluation of the hydraulic and thermal performances of the device, based on 3D numerical modeling, is conducted according to different approaches.
6

Modélisation physique et simulations numériques des écoulements dans les disjoncteurs électriques haute tension

Nichele, Sylvain 13 October 2011 (has links)
Les simulations numériques sont devenues un outil indispensable dans la conception des chambres de coupure des disjoncteurs électriques haute tension. Elles sont utilisées non seulement dans le dimensionnement des différentes pièces, mais elles fournissent également une aide précieuse dans la compréhension des phénomènes intervenant entre les deux électrodes au moment de la coupure. L’arc électrique généré entre ces deux électrodes rassemble de nombreux domaines de la physique plus ou moins complexes. Tous ces phénomènes ne sont pas encore parfaitement compris. Avec l’évolution de la puissance de calcul, ces simulations peuvent prendre en compte de plus en plus de phénomènes. Mais pour des raisons de temps de développement, la question des phénomènes à prendre en compte dans ces simulations se pose. Le but de telles simulations est de déterminer de manière rapide si une configuration est plus ou moins capable qu’une autre de couper sous une contrainte donnée. Ainsi, il est important de prendre en compte uniquement les phénomènes physiques importants et nécessaires pour avoir une réponse la plus décisive possible et la plus rapide possible, de la réussite ou non à la coupure d’une configuration testée. Dans cette thèse, nous nous sommes particulièrement intéressés aux déséquilibres thermiques et chimiques qui pourraient intervenir dans les disjoncteurs électriques haute tension au moment de la coupure. En effet, pour des raisons de temps et de coût de calcul, la plupart des simulations numériques actuelles sont réalisées en faisant une hypothèse forte : l’hypothèse d’Equilibre Thermodynamique Local (ETL). Cette hypothèse consiste à considérer que dans chaque maille de notre domaine d’étude et à chaque pas de temps, on a un équilibre thermodynamique réalisé. Faire cette hypothèse nous permet d’utiliser les lois de conservation (masse, quantité de mouvement et énergie) en allégeant le problème. Mais en réalité, cette hypothèse est mise à mal dès que l’on est en présence de forts gradients de température ou de densité. Pour réaliser ces simulations, le code numérique CARBUR a été utilisé. Des modules d’arc électrique (effet Joule et rayonnement) et d’électrode mobile ont été implémentés afin de pouvoir simuler au mieux le comportement du gaz présent dans les disjoncteurs électriques haute tension. Six études différentes ont été réalisées et sont présentées. Ces études portent sur les influences de la forme du bout des électrodes, d’une modélisation en Navier-Stokes par rapport à une modélisation en Euler, de la nature du gaz (SF6, CO2 et N2), du déséquilibre thermique dans le cas de l’azote ou encore du positionnement des termes sources de l’arc électrique dans les différentes équations d’évolution des énergies. Dans ce travail, une étude sur différents modèles cinétiques chimiques est proposée. Dans ces modèles, 5 espèces chimiques sont présentes : N2, N, N+, N2+ et e-. En ce qui concerne la température, on en distingue 4 : T, TVib-N2, TVib-N2+ et Te. / The numerical simulations are become a very important tool to design the high voltage circuit breaker (HVCB) chamber. They help for the understanding of the different phenomena which can take place between the 2 electrodes during an interruption process. The electric arc brings together many fields of physics more or less complex and many of these phenomena are still poorly studied. So many aspects remain to be explored to improve simulations. With the increase of the calculation power, these numerical simulations can take into account more phenomena. However, for reasonable simulation times, we need to know which phenomena are preponderant. The aim of these numerical simulations is to rapidly conclude on the capacity of geometry to success an interruption process compared to different other geometries, under a given stress. In this PhD dissertation, we are particularly interested on thermal and chemical non equilibrium that can occur in HVCB during an interruption process. Currently, most simulations are carried out with a strong hypothesis: the hypothesis of Local Thermodynamic Equilibrium (LTE). This assumption allows us to alleviate the problem and to reduce the computing time. But this assumption becomes not valid when high temperature or density gradients occur. To do these simulations, the CARBUR numerical code has been used. In order to simulate flow behaviors in HVCB, an electrical arc (Joule effect and radiation) model and a module of mobile electrode have been added. Six different studies have been done and are presented: influence of the electrode shape, influence of the Navier-Stokes equations compared to the Euler equations, influence of the gas (SF6, CO2 et N2), influence of the thermal non equilibrium in a nitrogen case, influence of the position of the arc source terms in the different energy equations. In this work, a study on different nitrogen chemical kinetics is proposed. In these models, 5 chemical species are distinguished: N2, N, N+, N2+ and e-. Finally, 4 different temperatures are used: T, TVib-N2, TVib-N2+ and Te.
7

Development of a time-resolved quantitative surface-temperature measurement technique and its application in short-duration wind tunnel testing

Risius, Steffen 04 July 2018 (has links)
No description available.

Page generated in 0.0336 seconds