• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 10
  • 3
  • 1
  • 1
  • Tagged with
  • 40
  • 40
  • 10
  • 10
  • 10
  • 9
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of a design methodology for transport aircraft variable camber flaps suitable for cruise and low-speed operations

Ammoo, Mohd Shariff January 2003 (has links)
This thesis describes the development of a generic design methodology for variable camber flap systems for transport aircraft, intended to be used for cruise and low-speed operations. The methodology was structured after several revisions were performed on conventional high-lift device design methodologies for existing transport aircraft. The definition and detail explanations are given at every phase of the methodology. A case study was performed in order to give an example of the implementation of the methodology where a transport aircraft called A TRA, a design study from previous PhD report, was taken as a model. Experimental work could not be performed, due to budget constraints, so the case study was only carried out using computer-based analyses. Software packages such as MSES-code (a Computational Fluid Dynamic software), CATIA and PATRANINASTRAN were used for this case study to analyse aerodynamic characteristics, layout as well as simulation and structure analyses respectively. The results obtained showed that it was practically feasible to deploy such a high-lift device to transport aircraft when the effect from aerodynamic loads gave minimum effect on structural deformation. The deflections of the flap as well as spoilers under critical loads were below the allowable limits, which had a minimal effect due to the additional lift force generated from the movable surfaces.
2

Three-dimensional interaction of wakes and boundary layers

Moghadam, A. H. K. January 1986 (has links)
No description available.
3

Development and analysis of turbulence models for flows with strong curvature and rotation

Grundestam, Olof January 2004 (has links)
<p>An explicit algebraic Reynolds stress model (EARSM) based ona pressure strain rate model including terms tensoriallynonlinear in the mean velocity gradients is developed in orderto improve predictions for .ows with strong curvature and/orrotation. This work has been carried out in the context of acollaborative international project on high-lift aerodynamics.For 2D mean .ows the nonlinear terms can easily be accountedfor in the model formulation. This is not the case for 3D mean.ows and approximations making the 2D and 3D mean .owformulations consistent are suggested. The proposed EARSM, theparent-EARSM and the corresponding di.erential Reynolds stressmodels (DRSM) are tested for spanwise rotating channel .ow andaxially rotating pipe .ow. The model predictions are comparedto experimental and DNS data. The nonlinear extensions areshown to have a signi.cant e.ect on the .ow predictions,somewhat less pronounced for the DRSM though. The turbulentdi.usion modelling in the EARSM computations is important forthe rotating pipe. It is shown that by using a Daly and Harlowdi.usion model, turbulence levels in good agreement withexperiments and DRSM can be achieved. However, by using asimpler e.ective eddy viscosity based di.usion model theturbulence kinetic energy levels are drastically overpredicted.Finally the proposed EARSM is tested on a standard high-liftcon.guration. The EARSM predictions are compared withexperiments and the predictions made by the standard K - ωtwo-equation model.</p><p><b>Descriptors:</b>Turbulence model, nonlinear modelling,streamline curvature, high-lift aerodynamics.</p>
4

Multidisciplinary Design in Aeronautics, Enhanced by Simulation-Experiment Synergy

Melin, Tomas January 2006 (has links)
This thesis covers some aspects of current aircraft design, and presents how experiment and simulation are used as tools. Together they give enhanced effects over employing either one separately. The work presented has been produced using both simulations and experiments. An overview of aircraft design tools is presented, together with a description of their application in research. Participation in two major design projects, HELIX and the Rescue wing, gave an opportunity to combine traditional experimental and computational tools. They also serve as a platform for developing two new tools, the vortex lattice program Tornado and the DoTrack camera based wind tunnel measurement system. The HELIX project aimed at exploring new, unconventional high-lift systems, such as blown flaps, flaperons and active vortex generators. The concepts were investigated with an array of conceptual design tools, ranging from handbook methods to high Reynold’s number wind tunnels. The research was done in several stages. After each stage the concepts failing to reach specifications were discontinued. The active vortex generator concept is followed in detail from the first phase in the HELIX project, and was finally evaluated by full computational fluid dynamics (CFD) and wind tunnel testing. The lessons learned in HELIX were applied to the Rescue wing project, where a kite balloon system for emergency localization was developed. The project is truly multidisciplinary, and both experiment and simulation had to be used in close conjunction. Lack of appropriate methods for measurement and analysis of this kind of device meant that new methods had to be developed. Recent experience of academia working closely together with industry has shown substantial benefits to all parties involved. The synergy of computer modeling and simulation with experiment plays an important role in the common collaborative modus operandi of academia and industry. In particular, the later stages of aeronautic educational programmes should actively pursue such collaboration. / QC 20100910
5

Development and analysis of turbulence models for flows with strong curvature and rotation

Grundestam, Olof January 2004 (has links)
An explicit algebraic Reynolds stress model (EARSM) based ona pressure strain rate model including terms tensoriallynonlinear in the mean velocity gradients is developed in orderto improve predictions for .ows with strong curvature and/orrotation. This work has been carried out in the context of acollaborative international project on high-lift aerodynamics.For 2D mean .ows the nonlinear terms can easily be accountedfor in the model formulation. This is not the case for 3D mean.ows and approximations making the 2D and 3D mean .owformulations consistent are suggested. The proposed EARSM, theparent-EARSM and the corresponding di.erential Reynolds stressmodels (DRSM) are tested for spanwise rotating channel .ow andaxially rotating pipe .ow. The model predictions are comparedto experimental and DNS data. The nonlinear extensions areshown to have a signi.cant e.ect on the .ow predictions,somewhat less pronounced for the DRSM though. The turbulentdi.usion modelling in the EARSM computations is important forthe rotating pipe. It is shown that by using a Daly and Harlowdi.usion model, turbulence levels in good agreement withexperiments and DRSM can be achieved. However, by using asimpler e.ective eddy viscosity based di.usion model theturbulence kinetic energy levels are drastically overpredicted.Finally the proposed EARSM is tested on a standard high-liftcon.guration. The EARSM predictions are compared withexperiments and the predictions made by the standard K - ωtwo-equation model. Descriptors:Turbulence model, nonlinear modelling,streamline curvature, high-lift aerodynamics.
6

CFD SIMULATIONS FOR THE EFFECT OF UNSTEADY WAKES ON THE BOUNDARY LAYER OF A HIGHLY LOADED LOW PRESSURE TURBINE AIRFOIL (L1A)

Vinci, Samuel J. 07 June 2011 (has links)
No description available.
7

An experimental investigation High rate/high lift aerodynamics Unsteady airfoil

Yeow, Kim Fong January 1989 (has links)
No description available.
8

Modelling the aerodynamics of propulsive system integration at cruise and high-lift conditions

Sibilli, Thierry January 2012 (has links)
Due to a trend towards Ultra High Bypass Ratio engines the corresponding engine/airframe interference is becoming a key aspect in aircraft design. The present economic situation increases the pressure on commercial aviation companies to reduce the Direct Operating Cost, and the environmental situation requires a new generation of aircraft with a lower environmental impact. Therefore detailed aerodynamic investigations are required to evaluate the real benefits of new technologies. The presented research activity is part of a long-term project with the main objective of generating a reliable and accurate tool to predict the performance of an aircraft over the whole flight domain. In particular the aim of this research was to perform advanced CFD in order to establish a tool able to evaluate engine installation effects for different configurations and attitudes. The developed tool can be provided with correlations of the Net Propulsive Force (NPF), the force exerted by the power-plant to the aircraft, as a function of position. This can be done in principle at cruise, hold, climb, descent, take-off and landing, to model the different integration effects at different phases. Due to the complexity of the problem it was only possible at an initial stage to determine these correlations at cruise condition. Two parametric test cases were evaluated, showing that the engine horizontal positioning can influence the mission fuel burn by up to 6.4%. According to the extensive literature review that has been done, this study can be regarded as the first open literature engine position-NPF parametric study using CFD. Even though no correlations were extracted for other conditions; a deployed high-lift wing configuration was also studied in detail, defining the main aerodynamics effects of the engine integration at high angle of attack. A topological study of the high-lift installation vortices is presented in this work and it can be considered the first in the open literature. It should be pointed out that extensive research is currently underway to correctly evaluate the high-lift aerodynamic using CFD. The Propulsive System Integration (PSI) in high-lift conditions is adding flow features to an already demanding problem, making it a real challenge for the numerical methods. Nevertheless the additional effects of a nacelle chine on the maximum lift were also evaluated. The main outcomes of this PhD research were: a coupled performance modelling tool able to handle the effects of engine-airframe integration as a function of geometry and attitude, and a topological study of the high-lift installation vortices. During the course of the work, this research was successfully suggested as an extra activity for the European NEWAC project (New Aero Engine Core Concepts), and resulted in a new deliverable for that project.
9

Modelling the aerodynamics of propulsive system integration at cruise and high-lift conditions

Sibilli, Thierry 03 1900 (has links)
Due to a trend towards Ultra High Bypass Ratio engines the corresponding engine/airframe interference is becoming a key aspect in aircraft design. The present economic situation increases the pressure on commercial aviation companies to reduce the Direct Operating Cost, and the environmental situation requires a new generation of aircraft with a lower environmental impact. Therefore detailed aerodynamic investigations are required to evaluate the real benefits of new technologies. The presented research activity is part of a long-term project with the main objective of generating a reliable and accurate tool to predict the performance of an aircraft over the whole flight domain. In particular the aim of this research was to perform advanced CFD in order to establish a tool able to evaluate engine installation effects for different configurations and attitudes. The developed tool can be provided with correlations of the Net Propulsive Force (NPF), the force exerted by the power-plant to the aircraft, as a function of position. This can be done in principle at cruise, hold, climb, descent, take-off and landing, to model the different integration effects at different phases. Due to the complexity of the problem it was only possible at an initial stage to determine these correlations at cruise condition. Two parametric test cases were evaluated, showing that the engine horizontal positioning can influence the mission fuel burn by up to 6.4%. According to the extensive literature review that has been done, this study can be regarded as the first open literature engine position-NPF parametric study using CFD. Even though no correlations were extracted for other conditions; a deployed high-lift wing configuration was also studied in detail, defining the main aerodynamics effects of the engine integration at high angle of attack. A topological study of the high-lift installation vortices is presented in this work and it can be considered the first in the open literature. It should be pointed out that extensive research is currently underway to correctly evaluate the high-lift aerodynamic using CFD. The Propulsive System Integration (PSI) in high-lift conditions is adding flow features to an already demanding problem, making it a real challenge for the numerical methods. Nevertheless the additional effects of a nacelle chine on the maximum lift were also evaluated. The main outcomes of this PhD research were: a coupled performance modelling tool able to handle the effects of engine-airframe integration as a function of geometry and attitude, and a topological study of the high-lift installation vortices. During the course of the work, this research was successfully suggested as an extra activity for the European NEWAC project (New Aero Engine Core Concepts), and resulted in a new deliverable for that project.
10

On Three Dimensional High Lift Flow Computations

Gopalakrishna, N January 2014 (has links) (PDF)
Computing 3D high lift flows has been a challenge to the CFD community because of three important reasons: complex physics, complex geometries and large computational requirements. In the recent years, considerable progress has been made in understanding the suitability of various CFD solvers in computing 3D high lift flows, through the systematic studies carried out under High Lift Prediction workshops. The primary focus of these workshops is to assess the ability of the CFD solvers to predict CLmax and αmax associated with the high lift flows, apart from the predictability of lift and drag of such flows in the linear region. Now there is a reasonable consensus in the community about the ability of the CFD solvers to predict these quantities and fresh efforts to further understand the ability of the CFD solvers to predict more complex physics associated with these flows have already begun. The goal of this thesis is to assess the capability of the computational methods in predicting such complex flow phenomena associated with the 3D High-Lift systems. For evaluation NASA three element Trapezoidal wing configuration which poses a challenging task in numerical modeling was selected. Unstructured data based 3D RANS solver HiFUN (HiFUN stands for High Resolution Flow Solver for UNstructured Meshes) is used in investigating the high lift flow. The computations were run fully turbulent, using the one equation Spalart-Allmaras turbulence model. A summary of the results obtained using the flow solver HiFUN for the 3D High lift NASA Trapezoidal wing are presented. Hybrid unstructured grids have been used for the computations. Grid converged solution obtained for the clean wing and the wing with support brackets, are compared with experimental data. The ability of the solver to predict critical design parameters associated with the high lift flow, such as αmax and CLmax is demonstrated. The utility of the CFD tools, in predicting change in aerodynamic parameters in response to perturbational changes in the configuration is brought out. The solutions obtained for the high lift configuration from two variants of the Spalart-Allmaras turbulence model are compared. To check the unsteadiness in the flow, particularly near stall, unsteady simulations were performed on static grid. Lastly, hysteresis on lower leg of lift curve is discussed, the results obtained for quasi-steady and dynamic unsteady simulations are presented. Inferences from the study on useful design practices pertaining to the 3D high lift flow simulations are summarized.

Page generated in 0.149 seconds