• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development and analysis of turbulence models for flows with strong curvature and rotation

Grundestam, Olof January 2004 (has links)
<p>An explicit algebraic Reynolds stress model (EARSM) based ona pressure strain rate model including terms tensoriallynonlinear in the mean velocity gradients is developed in orderto improve predictions for .ows with strong curvature and/orrotation. This work has been carried out in the context of acollaborative international project on high-lift aerodynamics.For 2D mean .ows the nonlinear terms can easily be accountedfor in the model formulation. This is not the case for 3D mean.ows and approximations making the 2D and 3D mean .owformulations consistent are suggested. The proposed EARSM, theparent-EARSM and the corresponding di.erential Reynolds stressmodels (DRSM) are tested for spanwise rotating channel .ow andaxially rotating pipe .ow. The model predictions are comparedto experimental and DNS data. The nonlinear extensions areshown to have a signi.cant e.ect on the .ow predictions,somewhat less pronounced for the DRSM though. The turbulentdi.usion modelling in the EARSM computations is important forthe rotating pipe. It is shown that by using a Daly and Harlowdi.usion model, turbulence levels in good agreement withexperiments and DRSM can be achieved. However, by using asimpler e.ective eddy viscosity based di.usion model theturbulence kinetic energy levels are drastically overpredicted.Finally the proposed EARSM is tested on a standard high-liftcon.guration. The EARSM predictions are compared withexperiments and the predictions made by the standard K - ωtwo-equation model.</p><p><b>Descriptors:</b>Turbulence model, nonlinear modelling,streamline curvature, high-lift aerodynamics.</p>
2

Development and analysis of turbulence models for flows with strong curvature and rotation

Grundestam, Olof January 2004 (has links)
An explicit algebraic Reynolds stress model (EARSM) based ona pressure strain rate model including terms tensoriallynonlinear in the mean velocity gradients is developed in orderto improve predictions for .ows with strong curvature and/orrotation. This work has been carried out in the context of acollaborative international project on high-lift aerodynamics.For 2D mean .ows the nonlinear terms can easily be accountedfor in the model formulation. This is not the case for 3D mean.ows and approximations making the 2D and 3D mean .owformulations consistent are suggested. The proposed EARSM, theparent-EARSM and the corresponding di.erential Reynolds stressmodels (DRSM) are tested for spanwise rotating channel .ow andaxially rotating pipe .ow. The model predictions are comparedto experimental and DNS data. The nonlinear extensions areshown to have a signi.cant e.ect on the .ow predictions,somewhat less pronounced for the DRSM though. The turbulentdi.usion modelling in the EARSM computations is important forthe rotating pipe. It is shown that by using a Daly and Harlowdi.usion model, turbulence levels in good agreement withexperiments and DRSM can be achieved. However, by using asimpler e.ective eddy viscosity based di.usion model theturbulence kinetic energy levels are drastically overpredicted.Finally the proposed EARSM is tested on a standard high-liftcon.guration. The EARSM predictions are compared withexperiments and the predictions made by the standard K - ωtwo-equation model. Descriptors:Turbulence model, nonlinear modelling,streamline curvature, high-lift aerodynamics.
3

An experimental investigation High rate/high lift aerodynamics Unsteady airfoil

Yeow, Kim Fong January 1989 (has links)
No description available.
4

Modelling and simulation of turbulence subject to system rotation

Grundestam, Olof January 2006 (has links)
Simulation and modelling of turbulent flows under influence of streamline curvature and system rotation have been considered. Direct numerical simulations have been performed for fully developed rotating turbulent channel flow using a pseudo-spectral code. The rotation numbers considered are larger than unity. For the range of rotation numbers studied, an increase in rotation number has a damping effect on the turbulence. DNS-data obtained from previous simulations are used to perform a priori tests of different pressure-strain and dissipation rate models. Furthermore, the ideal behaviour of the coefficients of different model formulations is investigated. The main part of the modelling is focused on explicit algebraic Reynolds stress models (EARSMs). An EARSM based on a pressure strain rate model including terms that are tensorially nonlinear in the mean velocity gradients is proposed. The new model is tested for a number of flows including a high-lift aeronautics application. The linear extensions are demonstrated to have a significant effect on the predictions. Representation techniques for EARSMs based on incomplete sets of basis tensors are also considered. It is shown that a least-squares approach is favourable compared to the Galerkin method. The corresponding optimality aspects are considered and it is deduced that Galerkin based EARSMs are not optimal in a more strict sense. EARSMs derived with the least-squares method are, on the other hand, optimal in the sense that the error of the underlying implicit relation is minimized. It is further demonstrated that the predictions of the least-squares EARSMs are in significantly better agreement with the corresponding complete EARSMs when tested for fully developed rotating turbulent pipe flow. / QC 20100825

Page generated in 0.0592 seconds