• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 4
  • 3
  • 1
  • Tagged with
  • 18
  • 18
  • 18
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

A Nitride-Based Reaction for the Formation of a Three-Phase Molybdenum-Silicon-Boron Intermetallic Alloy

Middlemas, Michael Robert 18 July 2005 (has links)
The alloy Mo-3Si-1B (wt%) may have the fracture toughness and oxidation resistance required for use as jet turbine engine blades. Mo-3Si-1B (wt%) forms a three-phase mixture of and #945;-Moss, A15 (Mo3Si) and T2 (Mo5SiB2). It has been observed that at high-temperatures, the A15 and T2 intermetallics form a oxidation resistant borosilicate glass coating. To achieve the proper combination of mechanical and thermal properties, the material must have a molybdenum matrix with a fine dispersion of intermetallics to produce a continuous protective layer. In this project, reactive sintering of molybdenum, Si3N4 and BN powders was used to create a semi-continuous molybdenum matrix with a fine dispersion of the A15 and T2 intermetallics. Sintering of the materials was further enhanced by the use of submicron-sized reactants. X-ray diffraction analysis was used verify the desired phases were formed. It was determined that formation of the A15 intermetallic phases begins as low as 1200?nd formation of T2 begins at 1300? The reactions are complete by 1400? Samples with bulk densities as high as 95% of theoretical were produced. Scanning electron microscopy images reveal a microstructure with dispersed intermetallics in a semi-continuous molybdenum matrix with grain sizes on the order of 1-4 and #956;m. It was found that by varying parameters such as mixing method and heating rates, it is possible to engineer the final microstructure, changing the level of dispersion of the intermetallics and continuity of the matrix.
12

Thesis_Mann_Final.pdf

Thomas R Mann (15348394) 26 April 2023 (has links)
<p>Ni-base superalloys are among the highest temperature capable alloys and are used pervasively throughout the transportation, energy, and nuclear industries. However, their microstructures have been largely limited to containing the γ´ (cubic) and γ´´ (tetragonal) phases to enable high strength at elevated temperatures, and this fixation has restricted alloy development opportunities. In the past three decades, a new set of alloys, strengthened by the γ´´´ (orthorhombic) phase, was developed by Haynes International. The alloys exhibit comparable strength to existing Ni-based superalloys and show a 25% decrease in the thermal expansion coefficient, designed for tighter clearances (thus improving engine efficiency) and help to reduce thermally induced fatigue from engine cycling. </p> <p>The newest iteration of such alloys, HAYNES<sup>®</sup> 244<sup>®</sup>, has a nominal composition of Ni-22.5Mo-8Cr-6W (wt.%), and each alloying element is used to help precipitate the γ´´´-Ni<sub>2</sub>(Cr, Mo, W) phase. The deformation mechanisms of this material are currently unknown. Previous studies investigating the predecessor alloy, HAYNES<sup>®</sup> 242<sup>®</sup> alloy, showed deformation twinning to be the dominant deformation mechanism during mechanical testing, but the physical phenomena responsible for this mode of deformation were not clearly elucidated. As a result, the primary motivation of this project is to understand the deformation behavior of the 244 alloy from the atomistic level and upwards. </p> <p>This work details efforts to elucidate these deformation mechanisms using an integrated computational and experimental approach. First-principles calculations were performed to determine the entire generalized stacking fault energy (GSFE) surface and slip pathways of the γ´´´ phase for dislocation slip. The various planar defects that could form from dislocation slip were predicted to provide significant barriers for dislocation motion due to their very high planar defect energies (~1000 mJ/m<sup>2</sup>), likely precluding shearing of the precipitates. We incorporated these results into phase field dislocation dynamics (PFDD) to simulate dislocation-precipitate interactions of finite size. These results showed that the planar defect energies of the γ´´´ phase largely govern the deformation behavior and critical resolved shear stress for precipitate shearing, regardless of precipitate shape, size, or orientation. Extensive mechanical testing conducted from room temperature up to 760 ºC over strain rates ranging from 10<sup>-9</sup> s<sup>-1</sup> to 10<sup>-4</sup> s<sup>-1</sup> combined with transmission electron microscopy validated the predicted deformation structures of creep and tensile samples. Shearing of individual precipitates by intrinsic and extrinsic stacking faults, as well as extensive deforming twinning, was observed. The integrated GSFE and PFDD simulations showed that the precipitates would resist dislocation shearing and favor twinning as the preferred deformation mechanism at all temperatures and strain rates investigated. These results provide pathways for microstructural and composition modification to further increase the strength of γ´´´ strengthened alloys in the future.</p> <p><br></p>
13

Processamento e caracterização de novas ligas à base de Nb-Ti para aplicações em turbinas aeronáuticas / Processing and characterization of new Nb-Ti based superalloys for aeronautical turbines applications

Cury, Paula Letícia Corrêa de Toledo 15 December 2017 (has links)
Durante as últimas décadas, um dos desafios da indústria aeroespacial é em relação ao aumento da eficiência dos motores de turbinas a gás. A eficiência dos motores é limitada principalmente pela temperatura dos gases de combustão, que não pode ser aumentada devido às limitações intrínsecas relacionadas ao uso das superligas à base de Ni nas partes quentes da turbina, onde as temperaturas podem atingir valores acima de 1000 °C. Este trabalho visa caracterizar novos materiais do sistema Nb-Ti para aplicações aeronáuticas, materiais de baixa massa específica que podem substituir as superligas de Ni. As ligas foram produzidas através de fusão a arco, tratadas termicamente a 1200 °C durante 48 h e expostas a temperaturas semelhantes às encontradas na seção de baixa pressão de um turborreator. Os materiais foram caracterizados em termos de composição química, propriedades mecânicas e microestrutura. Foram utilizadas as seguintes técnicas: difração de raios; microscopia eletrônica de varredura, espectrometria de raios X por energia dispersiva e Microscopia Eletrônica de Transmissão. A caracterização microestrutural revelou que as ligas expostas a 1000 °C durante 168 h apresentam uma microestrutura de duas fases composta principalmente de uma matriz ?0-BCC (Nb/Ti) com precipitados de uma segunda fase rica em titânio. Microestruturas de duas fases também foram observadas para as ligas expostas a 800 °C durante 168 h, na qual uma matriz ?0-BCC (Nb/Ti) com precipitados de uma segunda fase identificada como O2-Ti2NbAl foi observada. As ligas estudadas apresentaram massa específica inferior às superligas à base de Ni normalmente utilizadas na indústria aeronáutica. Em termos de propriedades mecânicas, as amostras expostas e testadas a 1000°C apresentaram valores baixos de resistência à compressão (100 MPa) quando comparado as amostras expostas e testadas a 800 °C (565 MPa). Pelos resultados de oxidação observou-se uma maior resistência a oxidação das ligas testadas a 800 °C, porém tanto a 1000 °C como a 800 °C não houve a formação de um filme protetor. / During the last decades, one of the challenges in the aerospace industry is with respect to increase the efficiency of gas turbine engines. The efficiency of the engines is a function of temperatures of the fluel gas, which cannot be increased because of intrinsic limitations related the use of Ni-based superalloys in the hot parts, where temperatures can reach values above 1000 °C. This work aims to investigate new materials in the Nb-Ti system, with low-density materials that may substitute Ni superalloys. The alloys were processed via arc melting, heat treated at 1200°C for 48h and exposed at temperatures similar to those encountered at the low-pressure section in a turbojet engine. The materials were characterized in terms of chemical composition, mechanical properties and microstructure. The following techniques have been used: X-ray diffraction; Scanning Electron Microscopy; Energy Dispersive X-ray Spectrometry and Transmission Electron Microscopy. The microstructural characterization have revealed that the alloys exposed at 1000 °C for 168 hours present a two-phase microstructure composed mainly of a ?0-BCC (Nb/Ti) matrix with precipitations of a second phase rich in titanium. Two-phase microstructures were also observed for the alloys exposed at 800 °C for 168 hours, where a ?0-BCC (Nb/Ti) matrix is observed with precipitates of a second phase identified as O2-Ti2NbAl. The studies alloys reported a lower density when comparing with the Ni based superalloys normally used in the aeronautical industry. In terms of mechanical properties, specimens exposed and tested at 1000 °C showed lower values of compressive strength (100 MPa) than those exposed and tested at 800 °C (565 MPa). The oxidation results allowed to observe a higher oxidation resistance of the alloys tested at 800 °C, however there was no protective film formation at 1000 °C as at 800 °C.
14

Fabrication, strength and oxidation of molybdenum-silicon-boron alloys from reaction synthesis

Middlemas, Michael Robert 06 April 2009 (has links)
Mo-Si-B alloys are a leading candidate for the next generation of jet turbine engine blades and have the potential to raise operating temperatures by 300-400°C. The alloys of interest are a three-phase mixture of the molybdenum solid solution (Moss) and two intermetallic phases, Mo3Si (A15) and Mo5SiB2 (T2). A novel powder metallurgical method was developed which uses the reaction of molybdenum, silicon nitride (Si3N4) and boron nitride (BN) powders to synthesize a fine dispersion of intermetallics in a Moss matrix. The covalent nitrides are stable in oxidizing environments up to 1000ºC, allowing for fine particle processing. The process developed uses standard powder processing techniques to create Mo-Si-B alloys in a less complex and expensive manner than previously demonstrated. This powder metallurgy approach yields a fine dispersion of intermetallics in the Moss matrix with average grain sizes of 2-4μm. Densities up to 95% of theoretical were attained from pressureless sintering at 1600°C and full theoretical density was achieved by hot-isostatic pressing (HIP). Sintering and HIPing at 1300°C reduced the grain sizes of all three phases by over a factor of two. Microstructure examination by electron back-scatter diffraction imaging was used to precisely define the location of the phases and to measure the volume fractions and grain size distributions. Microstructural quantification techniques including two-point correlation functions were used to quantify microstructural features and correlate the BN reactant powder size and morphology to the distribution of the intermetallic phases. High-temperature tensile tests were conducted and yield strengths of 580MPa at 1100°C and 480MPa at 1200°C were measured for the Mo-2Si-1Bwt.% alloy. The yield strength of the Mo-3Si-1Bwt.% alloy was 680MPa at 1100°C and 420MPa at 1300°C. A review of the pertinent literature reveals that these are among the highest yield strengths measured for these compositions. The oxidation resistance in air at 1000 and 1100°C was examined. The protective borosilicate surface layer formed quickly due to the close spacing of intermetallic particles and pre-oxidation treatment was developed to further limit the transient oxidation behavior. An oxidation model was developed which factors in the different stages of oxidation to predict compositions that minimize oxidation.
15

Processamento e caracterização de novas ligas à base de Nb-Ti para aplicações em turbinas aeronáuticas / Processing and characterization of new Nb-Ti based superalloys for aeronautical turbines applications

Paula Letícia Corrêa de Toledo Cury 15 December 2017 (has links)
Durante as últimas décadas, um dos desafios da indústria aeroespacial é em relação ao aumento da eficiência dos motores de turbinas a gás. A eficiência dos motores é limitada principalmente pela temperatura dos gases de combustão, que não pode ser aumentada devido às limitações intrínsecas relacionadas ao uso das superligas à base de Ni nas partes quentes da turbina, onde as temperaturas podem atingir valores acima de 1000 °C. Este trabalho visa caracterizar novos materiais do sistema Nb-Ti para aplicações aeronáuticas, materiais de baixa massa específica que podem substituir as superligas de Ni. As ligas foram produzidas através de fusão a arco, tratadas termicamente a 1200 °C durante 48 h e expostas a temperaturas semelhantes às encontradas na seção de baixa pressão de um turborreator. Os materiais foram caracterizados em termos de composição química, propriedades mecânicas e microestrutura. Foram utilizadas as seguintes técnicas: difração de raios; microscopia eletrônica de varredura, espectrometria de raios X por energia dispersiva e Microscopia Eletrônica de Transmissão. A caracterização microestrutural revelou que as ligas expostas a 1000 °C durante 168 h apresentam uma microestrutura de duas fases composta principalmente de uma matriz ?0-BCC (Nb/Ti) com precipitados de uma segunda fase rica em titânio. Microestruturas de duas fases também foram observadas para as ligas expostas a 800 °C durante 168 h, na qual uma matriz ?0-BCC (Nb/Ti) com precipitados de uma segunda fase identificada como O2-Ti2NbAl foi observada. As ligas estudadas apresentaram massa específica inferior às superligas à base de Ni normalmente utilizadas na indústria aeronáutica. Em termos de propriedades mecânicas, as amostras expostas e testadas a 1000°C apresentaram valores baixos de resistência à compressão (100 MPa) quando comparado as amostras expostas e testadas a 800 °C (565 MPa). Pelos resultados de oxidação observou-se uma maior resistência a oxidação das ligas testadas a 800 °C, porém tanto a 1000 °C como a 800 °C não houve a formação de um filme protetor. / During the last decades, one of the challenges in the aerospace industry is with respect to increase the efficiency of gas turbine engines. The efficiency of the engines is a function of temperatures of the fluel gas, which cannot be increased because of intrinsic limitations related the use of Ni-based superalloys in the hot parts, where temperatures can reach values above 1000 °C. This work aims to investigate new materials in the Nb-Ti system, with low-density materials that may substitute Ni superalloys. The alloys were processed via arc melting, heat treated at 1200°C for 48h and exposed at temperatures similar to those encountered at the low-pressure section in a turbojet engine. The materials were characterized in terms of chemical composition, mechanical properties and microstructure. The following techniques have been used: X-ray diffraction; Scanning Electron Microscopy; Energy Dispersive X-ray Spectrometry and Transmission Electron Microscopy. The microstructural characterization have revealed that the alloys exposed at 1000 °C for 168 hours present a two-phase microstructure composed mainly of a ?0-BCC (Nb/Ti) matrix with precipitations of a second phase rich in titanium. Two-phase microstructures were also observed for the alloys exposed at 800 °C for 168 hours, where a ?0-BCC (Nb/Ti) matrix is observed with precipitates of a second phase identified as O2-Ti2NbAl. The studies alloys reported a lower density when comparing with the Ni based superalloys normally used in the aeronautical industry. In terms of mechanical properties, specimens exposed and tested at 1000 °C showed lower values of compressive strength (100 MPa) than those exposed and tested at 800 °C (565 MPa). The oxidation results allowed to observe a higher oxidation resistance of the alloys tested at 800 °C, however there was no protective film formation at 1000 °C as at 800 °C.
16

Environmental Degradation Of Oxidation Resistant And Thermal Barrier Coatings For Fuel-flexible Gas Turbine Applications

Mohan, Prabhakar 01 January 2010 (has links)
The development of thermal barrier coatings (TBCs) has been undoubtedly the most critical advancement in materials technology for modern gas turbine engines. TBCs are widely used in gas turbine engines for both power-generation and propulsion applications. Metallic oxidation-resistant coatings (ORCs) are also widely employed as a stand-alone protective coating or bond coat for TBCs in many high-temperature applications. Among the widely studied durability issues in these high-temperature protective coatings, one critical challenge that received greater attention in recent years is their resistance to high-temperature degradation due to corrosive deposits arising from fuel impurities and CMAS (calcium-magnesium-alumino-silicate) sand deposits from air ingestion. The presence of vanadium, sulfur, phosphorus, sodium and calcium impurities in alternative fuels warrants a clear understanding of high-temperature materials degradation for the development of fuel-flexible gas turbine engines. Degradation due to CMAS is a critical problem for gas turbine components operating in a dust-laden environment. In this study, high-temperature degradation due to aggressive deposits such as V2O5, P2O5, Na2SO4, NaVO3, CaSO4 and a laboratory-synthesized CMAS sand for free-standing air plasma sprayed (APS) yttria stabilized zirconia (YSZ), the topcoat of the TBC system, and APS CoNiCrAlY, the bond coat of the TBC system or a stand-alone ORC, is examined. Phase transformations and microstructural development were examined by using x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. This study demonstrated that the V2O5 melt degrades the APS YSZ through the formation of ZrV2O7 and YVO4 at temperatures below 747°C and above 747°C, respectively. Formation of YVO4 leads to the depletion of the Y2O3 stabilizer and the deleterious transformation of the YSZ to the monoclinic ZrO2 phase. The investigation on the YSZ degradation by Na2SO4 and a Na2SO4 + V2O5 mixture (50-50 mol. %) demonstrated that Na2SO4 itself did not degrade the YSZ, however, in the presence of V2O5, Na2SO4 formed vanadates such as NaVO3 that degraded the YSZ through YVO4 formation at temperature as low as 700°C. The APS YSZ was found to react with the P2O5 melt by forming ZrP2O7 at all temperatures. This interaction led to the depletion of ZrO2 in the YSZ (i.e., enrichment of Y2O3 in t' -YSZ) and promoted the formation of the fluorite-cubic ZrO2 phase. Above 1250°C, CMAS deposits were observed to readily infiltrate and significantly dissolve the YSZ coating via thermochemical interactions. Upon cooling, zirconia reprecipitated with a spherical morphology and a composition that depended on the local melt chemistry. The molten CMAS attack destabilized the YSZ through the detrimental phase transformation (t - > t - > f + m). Free standing APS CoNiCrAlY was also prone to degradation by corrosive molten deposits. The V2O5 melt degraded the APS CoNiCrAlY through various reactions involving acidic dissolution of the protective oxide scale, which yielded substitutional-solid solution vanadates such as (Co,Ni)3(VO4)2 and (Cr,Al)VO4. The molten P2O5, on the other hand, was found to consume the bond coat constituents significantly via reactions that formed both Ni/Co rich phosphates and Cr/Al rich phosphates. Sulfate deposits such as Na2SO4, when tested in encapsulation, damaged the CoNiCrAlY by Type I acidic fluxing hot corrosion mechanisms at 1000°C that resulted in accelerated oxidation and sulfidation. The formation of a protective continuous Al2O3 oxide scale by preoxidation treatment significantly delayed the hot corrosion of CoNiCrAlY by sulfates. However, CoNiCrAlY in both as-sprayed and preoxidized condition suffered a significant damage by CaSO4 deposits via a basic fluxing mechanism that yielded CaCrO4 and CaAl2O4. The CMAS melt also dissolved the protective Al2O3 oxide scale developed on CoNiCrAlY by forming anorthite platelets and spinel oxides. Based on the detailed investigation on degradation of the APS YSZ and CoNiCrAlY by various corrosive deposits, an experimental attempt was carried out to mitigate the melt-induced deposit attack. Experimental results from this study demonstrate, for the first time, that an oxide overlay produced by electrophoretic deposition (EPD) can effectively perform as an environmental barrier overlay for APS TBCs. The EPD protective overlay has a uniform and easily-controllable thickness, uniformly distributed closed pores and tailored chemistry. The EPD Al2O3 and MgO overlays were successful in protecting the APS YSZ TBCs against CMAS attack and hot corrosion attack (e.g., sulfate and vanadate), respectively. Furnace thermal cyclic oxidation testing of overlay-modified TBCs on bond-coated superalloy also demonstrated the good adhesive durability of the EPD Al2O3 overlay.
17

Aplikace svařování elektronovým svazkem pro rekonstrukci vzorků pro mechanické zkoušky z malých objemů materiálu / Reconstruction of mechanical testing samples from small volumes of materials using electron beam welding

Roubalová, Jana January 2015 (has links)
This thesis is focused on application samples with the inner insert used for Charpy impact test. This insert is welded to additional material by electron beam with pre-selected welded parameters. These parameters were chosen from data of performed experiments on homogenous welds. Resulting heterogenous weld was performed of evaluation of the microstructure, chemical composition and microhardness. Experimental materials were used austenitic steel 17 240 and ferritic steel 17 153 used on high-temperature applications.
18

Feasibility Study for a Cast Steel Guideline / Förstudie för en gjutståls-guideline

Härdeman, Mimmi January 2015 (has links)
The present work was conducted at Scania CV AB and has as main goal to produce a cast steel guideline. There is a great need to conduct a cast steel guideline, in order to help designers in their process to choose suitable materials and methods to produce lightweight components with higher performance. This work contains information related to mechanical properties, casting processes, castability, machinability, defect characterization, heat treatments, weldability and surface treatments of cast steels. This work was limited to cast steels which could be applied on two specific components of the truck, a bracket which is a structural component of chassis subjected to fatigue and a turbo manifold which is subjected to creep, oxidation, corrosion-, thermal- and mechanical- fatigue. A benchmark search was performed focused on these two components. A characterization of a cast stainless steel turbo manifold prototype was performed in the as-cast state, which included microstructural analyzes and hardness measurements. Besides this initial characterization, a set of heat treatments were conducted, in order to study the possibility to eliminate the initial grain boundary carbides. The main conclusions of this work are that cast steel has potential to be a material choice in many applications due to its wide range of properties. For structural parts, cast steel is advantageous compared with cast iron when for instance welding and high strength combined with high fracture toughness are requirements. For high temperature resistance components, cast steel or more precisely cast stainless steel, is advantageous for service at temperatures &gt;750 ºC,besides its higher price. The annealing heat treatment followed by an aging treatment eliminated most of the grain boundary carbides and increase the hardness through a fine dispersion of carbides in matrix, which can also increase the creep resistance. / Examensarbetet utfördes på Scania CV AB med främsta målet att utarbeta en vägledande guide för gjutstål. Det finns ett stort behov av att sammanställa en guideline för gjutstål, med syfte att hjälpa konstruktörer i deras process att välja lämpliga material och metoder för att producera lättviktskomponenter med högre prestanda. Arbetet innehåller information om mekaniska egenskaper, gjutningsprocesser, gjutbarhet, skärbarhet, defektkarakterisering, värmebehandlingar, svetsbarhet, ytbehandling och mycket annat gällande gjutstål. Detta arbete var begränsat till gjutstål som kan tillämpas för två specifika komponenter i lastbilen, en konsol som är en strukturell komponent i chassit som utsätts för utmattning och ett turbogrenrör vilket är en komponent som utsätts för högtemperaturcykler. En benchmark utfördes med fokus på dessa två komponenter. Slutligen gjordes en karakterisering av turbogrenrörsprototypen i rostfritt stål, i det gjutnatillståndet, vilket inkluderade mikroanalyser och hårdhetsmätningar. Förutom den förstakarakteriseringen, utfördes en uppsättning värmebehandlingar för att undersöka möjligheten att eliminera de initiala korngräns-karbiderna. De viktigaste slutsatserna av detta arbete är att gjutstål har potential att bli ett materialval i många applikationer på grund dess breda egenskaper. Konstruktionsdelar i gjutstål är fördelaktiga jämfört med gjutjärn, till exempel vid svetsning och när hög hållfasthet i kombination med hög brottseghet är nödvändigt. För högtemperaturs-komponenter är gjutstål, eller mer exakt, gjutna rostfria stål fördelaktiga för service vid temperaturer &gt;750 ºC, med undantag för dess högre pris. Glödgningsvärmebehandling följt av åldringsbehandling eliminerar de flesta av korngräns-karbiderna och ökar hårdheten genom en fin dispersion av karbider i matrisen, vilket också kan öka krypmotståndet.

Page generated in 0.1091 seconds