Spelling suggestions: "subject:"highlift device"" "subject:"lightlift device""
1 |
Výpočet zatížení vztlakových klapek letounu L410NG a porovnání s letovým měřením / Computational analysis of high lift devices loads for L410 aircraft and its comparison to experimental dataFlorián, Martin January 2015 (has links)
The computational model design of a twin-engine, turbo-propeller, commuter aircraft and its two landing configuration analysis is the subject of the Master‘s thesis. The solution contents calibration part, creation of a computational mesh, global aerodynamics characteristics definition and detailed high lift devices load of L410 NG aircraft. The acquired results are compared to wind tunnel data. The comparison of accuracy and advantages of CFD is involved as well.
|
2 |
Design methodology for wing trailing edge device mechanismsMartins Pires, Rui Miguel 04 1900 (has links)
Over the last few decades the design of high lift devices has become a very
important part of the total aircraft design process. Reviews of the design process
are performed on a regular basis, with the intent to improve and optimize the
design process.
This thesis describes a new and innovative methodology for the design and
evaluation of mechanisms for Trailing Edge High-Lift devices. The initial research
reviewed existing High-Lift device design methodologies and current flap systems
used on existing commercial transport aircraft. This revealed the need for a design
methodology that could improve the design process of High-Lift devices, moving
away from the conventional "trial and error" design approach, and cover a wider
range of design attributes. This new methodology includes the use of the
innovative design tool called SYNAMEC. This is a state-of-the-art engineering
design tool for the synthesis and optimizations of aeronautical mechanisms. The
new multidisciplinary design methodology also looks into issues not usually
associated with the initial stages of the design process, such as Maintainability,
Reliability, Weight and Cost.
The availability of the SYNAMEC design tool and its ability to perform Synthesis
and Optimization of mechanisms led to it being used as an important module in
the development of the new design methodology. The SYNAMEC tool allows
designers to assess more mechanisms in a given time than the traditional design
methodologies.
A validation of the new methodology was performed and showed that creditable
results were achieved.
A case study was performed on the ATRA
-
Advance Transport Regional Aircraft,
a Cranfield University design project, to apply the design methodology and select
from within a group of viable solutions the most suitable type of mechanism for the
Variable Camber Wing concept initially defined for the aircraft. The results show
that the most appropriate mechanism type for the ATRA Variable Camber Wing is
the Link /Track Mechanism. It also demonstrated how a wide range of design
attributes can now be considered at a much earlier stage of the design.
|
3 |
Design methodology for wing trailing edge device mechanismsMartins Pires, Rui Miguel January 2007 (has links)
Over the last few decades the design of high lift devices has become a very important part of the total aircraft design process. Reviews of the design process are performed on a regular basis, with the intent to improve and optimize the design process. This thesis describes a new and innovative methodology for the design and evaluation of mechanisms for Trailing Edge High-Lift devices. The initial research reviewed existing High-Lift device design methodologies and current flap systems used on existing commercial transport aircraft. This revealed the need for a design methodology that could improve the design process of High-Lift devices, moving away from the conventional "trial and error" design approach, and cover a wider range of design attributes. This new methodology includes the use of the innovative design tool called SYNAMEC. This is a state-of-the-art engineering design tool for the synthesis and optimizations of aeronautical mechanisms. The new multidisciplinary design methodology also looks into issues not usually associated with the initial stages of the design process, such as Maintainability, Reliability, Weight and Cost. The availability of the SYNAMEC design tool and its ability to perform Synthesis and Optimization of mechanisms led to it being used as an important module in the development of the new design methodology. The SYNAMEC tool allows designers to assess more mechanisms in a given time than the traditional design methodologies. A validation of the new methodology was performed and showed that creditable results were achieved. A case study was performed on the ATRA - Advance Transport Regional Aircraft, a Cranfield University design project, to apply the design methodology and select from within a group of viable solutions the most suitable type of mechanism for the Variable Camber Wing concept initially defined for the aircraft. The results show that the most appropriate mechanism type for the ATRA Variable Camber Wing is the Link /Track Mechanism. It also demonstrated how a wide range of design attributes can now be considered at a much earlier stage of the design.
|
4 |
Etude aéroacoustique de configurations génériques de dispositifs hypersustentateurs : approches analytique et expérimentaleLemoine, Benoît 24 January 2013 (has links)
Depuis plusieurs décennies, le trafic aérien ne cesse de croître. Ainsi, près de 6 milliards de passagers transitent dans le monde par an. Les objectifs européens à l’horizon 2020 en terme d’émission sonore des aéronefs imposent une réduction de 10 dB par point de mesure par rapport aux aéronefs de l’an 2000. Dans ce contexte, le projet européen VALIANT (VALidation and Improvement of Airframe Noise prediction Tools) a pour but principal de tester, valider et améliorer les codes numériques et les modèles de prédiction du bruit de cellule (trains d’atterrissage + voilure) sur des géométries simplifiées afin de disposer de cas tests pour les recherches futures. L’objectif de la thèse, associé à la contribution de l’ECL dans ce projet, est de créer des bases de données expérimentales fiables sur des systèmes à deux éléments – bec/aile et aile/volet – et de modéliser analytiquement le bruit issu de tels systèmes. La thèse s’est concentrée sur un système aile/volet non porteur et parallèle dans un écoulement de soufflerie à veine ouverte, en configuration d’alignement ou de recouvrement partiel, menant à de possibles interactions aérodynamiques et/ou acoustiques. Les mesures ont été faites pour différentes vitesses d’écoulement (30 − 100 m~s), avec une attention particulière à 50 m~s (M0 ∼ 0, 15). Le taux de turbulence de l’écoulement incident est modifiable par l’ajout d’une grille de turbulence à maille large placée dans la section de sortie du convergent. Les résultats aérodynamiques (fil chaud, pression en paroi) ont révélé la présence d’une forte interaction lorsque la distance entre les deux corps est de l’ordre de grandeur de la couche limite turbulente au bord de fuite de l’aile. De plus, le couplage acoustique a lieu lorsque la longueur de recouvrement est positive ou nulle. Des mesures de localisation de sources menées par l’ONERA/DSNA ont permis de valider les mesures de champ lointain en confirmant l’absence de sources de bruit d’installation en dessous de 10 kHz. Par ailleurs, des comparaisons avec les simulations numériques donnent de bons accords. Du point de vue analytique, le problème mathématique de deux plaques planes en recouvrement partiel dans un écoulement uniforme a été posé et une réduction bidimensionnelle a été justifiée. Le problème n’ayant pas de solution exacte, plusieurs modèles issus de la littérature – théories de Howe et d’Amiet – ont été étudiés. Les plus pertinents ont été confrontés aux résultats expérimentaux, révélant les limites asymptotiques de ces modèles. Un modèle original est alors proposé pour la géométrie du problème posé, sans hypothèse restrictive. La démarche est basée sur une procédure de diffraction itérative permettant de prendre en compte la proximité des deux corps et utilisant la fonction de Green exacte du demi-plan en écoulement uniforme. Le modèle prédit des comportements qualitatifs angle/fréquence proches des résultats expérimentaux. La prise en compte de la statistique des rafales incidentes reste néanmoins à effectuer afin de procéder à des comparaisons quantitatives. Une campagne expérimentale complémentaire avec une marche descendante permet de mettre en évidence les écoulements de cavité arrière d’une aile, plus proche de la réalité. De même, des mesures sur une configuration bec/aile a été testée et la prise en compte de la déflexion du jet de la soufflerie pour la réfraction des ondes sonores par la couche de cisaillement a été proposée. / Air traffic still grows from decades, with yearly 6 billion passengers nowadays in the world. By 2020, the EC imposes aircraft noise reductions by 10 dB per measuring point with respect to the status in 2000. In this context, VALIANT (VALidation and Improvement of Airframe Noise prediction Tools) is an EC-supported project that aims at testing, validating and improving numerical codes and analytical/theoretical models for the prediction of airframe noise (landing gears + high-lift devices) in simplified configurations in order to generate test cases for research needs. The main objective of the thesis in connection with ECL contribution in the scope of VALIANT project is to generate reliable experimental databases for 2-element systems – slatwing and wing-flap – as well as to analytically model overlapping configurations. It is particulary focussed on the experimental and analytical studies of a non lifting wing-flap system in a parallel flow, in aligned and overlapping arrangements. This is aimed at discussing likely aerodynamic and/or acoustic interactions. The tests have been carried out in an open-jet anechoic wind-tunnel for each arrangement and for several flow speeds (30-100 m/s), with main interest on 50 m/s (M0 ∼ 0, 15). The turbulence rate could be changed by fixing a removable turbulence grid with a large mesh at the outlet cross-section of the duct. Aerodynamic results (hot-wire anemometry, wall-pressure) show a strong interaction when the wing-flap distance is about the wing trailingedge boundary layer thickness. Acoustic coupling can be pointed out in cases of overlap. Source localization tests performed by ONERA/DSNA have permitted to validate far-field acoustic tests since no installation effect source seems to strongly radiate below 10 kHz. A good agreement with numerical simulations has been shown for every test. In order to predict noise analytically for a 2-element system in case of overlap in a uniform flow, the mathematical statement has been defined and a 2D-reduction of the equation system can be justified. Since no exact solution exists, several models from the literature – Howe’s and Amiet’s theories – have been studied. Comparisons between overlapping half-planes and slotted trailing-edge models proposed by Howe and experimental results show obvious limitations in the predictions. Then, an original model is proposed involving two bodies in close overlap arrangement, with no assumption. It is based on an iterative scattering procedure to take into account the close vicinity of the two bodies, using the exact half-plane Green’s function in a uniform flow. Convergence is relatively quick and qualitative predictions in angle/frequency behaviour show a good agreement with experiments. However, the statistics of the vortical flows responsible for the sound must be implemented for better comparisons. Other experiments have been done with a backward-facing step – it represents wing trailing-edge cove – to make cavity flow mechanisms appear, such as what is observed in real HLD. Finally, a series of tests has been performed involving a slat-wing system and an angular correction due to refraction of sound waves in shear-layer for a deflected jet has been proposed.
|
5 |
High-Order Spectral Element Method Simulation of Flow Past a 30P30N Three-Element High Lift WingVadsola, Mayank 10 September 2020 (has links)
The purpose of a multi-element high lift device is to increase lift dramatically
while controlling the stall limit. The fluid flow over a multi-element high lift device
has been explored widely both experimentally and numerically at high Reynolds
numbers (O(10^6 )). The numerical simulations use turbulence models and hence
details of the flow are not yet available. Low Reynolds number (O(10^4 )) flows
over high lift devices have not been explored until recently. These lower Reynolds
number flows have applications in the development of small aerial vehicles. The
present work discusses both two-dimensional and three-dimensional direct numer-
ical simulations of fluid flow over a 30P30N three-element high lift system using a
high-order spectral element method code, Nek5000, that solves the incompressible
Navier-Stokes equations. The intricate geometry of the multi-element device poses
a challenge for the high-order spectral element method. We study the complex
flow physics in the slat cove region and the wake/shear layer interaction over a
30P30N three-element high lift device. The targeted cases are at Reynolds num-
bers based on stowed chord lengths (Rec ) of 8.32 × 10^3 , 1.27 × 10^4 , and 1.83 × 10^4 at angle of attack of 4. A critical interval for Rec has previously been found
between 1.27 × 10^4 and 1.38 × 10^4 in experiments. This divides the flow into
two types: when Rec is below the critical interval, no roll-up is observed in the
slat cove and Görtler vortices dominate the slat wake; however when the Rec is
above the critical interval, a roll-up is observed in the slat cove and co-existence
of streamwise and spanwise vortices is confirmed in the slat wake. We confirm
the presence of the critical interval from the simulations performed at three values of Rec . Lift and drag analysis is provided along with pressure coefficient plots
for each element of the multi-element airfoil. Different vortical structures are also
identified in the transition of flow from two dimensions to three dimensions. The
relevant validation is performed with the available experimental data.
|
6 |
Optimalizace štěrbinové vztlakové klapky letounu / Optimization of single slotted flapDvořák, Petr January 2009 (has links)
The main objective of this diploma thesis is to optimize the high lift device on the wing of the Phoenix Air U-15 ultralight aircraft, so that it complies with the UL-2 regulation regarding the stalling speed – 65 KPH. This is fulfilled by optimization of the slotted flap position. Methods used include the Response Surface Method and the Computational Fluid Dynamics approach – namely Ansys Fluent v6 software package. Furthermore, the paper deals with take-off flap optimization and construction of the flap deflection mechanism.
|
Page generated in 0.0509 seconds